Seminars and Colloquia by Series

Interpolation sets and arithmetic progressions

Series
Analysis Seminar
Time
Wednesday, February 8, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Itay LondnerTel-Aviv University
Given a set S of positive measure on the unit circle, a set of integers K is an interpolation set (IS) for S if for any data {c(k)} in l^2(K) there exists a function f in L^2(S) such that its Fourier coefficients satisfy f^(k)=c(k) for all k in K. In the talk I will discuss the relationship between the concept of IS and the existence of arbitrarily long arithmetic progressions with specified lengths and step sizes in K. Multidimensional analogues of this subject will also be considered.This talk is based on joint work with Alexander Olevskii.

Normal rulings of Legendrian links

Series
Geometry Topology Student Seminar
Time
Wednesday, February 8, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Caitlin LeversonGeorgia Tech
Normal rulings are decompositions of a projection of a Legendrian knot or link. Not every link has a normal ruling, so existence of a normal ruling gives a Legendrian link invariant. However, one can use the normal rulings of a link to define the ruling polynomial of a link, which is a more useful Legendrian knot invariant. In this talk, we will discuss normal rulings of Legendrian links in various manifolds and prove that the ruling polynomial is a Legendrian link invariant.

Dynamics and Analysis of some Degenerate 4th order PDEs related to crystal evolution

Series
PDE Seminar
Time
Tuesday, February 7, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jeremy MarzuolaUniversity of North Carolina, Chapel Hill
We discuss the derivation and analysis of a family of 4th order nonlinear PDEs that arise in the study of crystal evolution. This is joint work with Jon Weare, Jianfeng Lu, Dio Margetis, Jian-Guo Liu and Anya Katsevich.

Joint GT-UGA Seminar at UGA

Series
Geometry Topology Seminar
Time
Monday, February 6, 2017 - 14:30 for 2.5 hours
Location
UGA Room 303
Speaker
Dan Cristofaro-Gardiner and John EtnyreHarvard and Georgia Tech
John Etnyre: "Embeddings of contact manifolds" Abstract: I will discuss recent results concerning embeddings and isotopies of one contact manifold into another. Such embeddings should be thought of as generalizations of transverse knots in 3-dimensional contact manifolds (where they have been instrumental in the development of our understanding of contact geometry). I will mainly focus on embeddings of contact 3-manifolds into contact 5-manifolds. In this talk I will discuss joint work with Ryo Furukawa aimed at using braiding techniques to study contact embeddings. Braided embeddings give an explicit way to represent some (maybe all) smooth embeddings and should be useful in computing various invariants. If time permits I will also discuss other methods for embedding and constructions one may perform on contact submanifolds. Dan Cristofaro-Gardiner: "Beyond the Weinstein conjecture" Abstract: The Weinstein conjecture states that any Reeb vector field on a closed manifold has at least one closed orbit. The three-dimensional case of this conjecture was proved by Taubes in 2007, and Hutchings and I later showed that in this case there are always at least 2 orbits. While examples exist with exactly two orbits, one expects that this lower bound can be significantly improved with additional assumptions. For example, a theorem of Hofer, Wysocki, and Zehnder states that a generic nondegenerate Reeb vector field associated to the standard contact structure on $S^3$ has either 2, or infinitely many, closed orbits. We prove that any nondegenerate Reeb vector field has 2 or infinitely many closed orbits as long as the associated contact structure has torsion first Chern class. This is joint work with Mike Hutchings and Dan Pomerleano.

Generalized Permutohedra from Probabilistic Graphical Models

Series
Combinatorics Seminar
Time
Friday, February 3, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech
A graphical model encodes conditional independence relations via the Markov properties. For an undirected graph these conditional independence relations are represented by a simple polytope known as the graph associahedron, which can be constructed as a Minkowski sum of standard simplices. There is an analogous polytope for conditional independence relations coming from any regular Gaussian model, and it can be defined using relative entropy. For directed acyclic graphical models we give a construction of this polytope as a Minkowski sum of matroid polytopes. The motivation came from the problem of learning Bayesian networks from observational data. This is a joint work with Fatemeh Mohammadi, Caroline Uhler, and Charles Wang.

Building Morse/Floer type homology theories

Series
Geometry Topology Working Seminar
Time
Friday, February 3, 2017 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

Please Note: Note the semianr scheduled for 1.5 hours. (We might take a short break in the middle and then go slightly longer.)

In this series of talks I will descibe a general proceedure to construct homology theories using analytic/geometric techiques. We will then consider Morse homology in some detail and a simple example of this process. Afterwords we will consider other situations like Floer theory and possibly contact homology.

Phase Retrieval Meets Statistical Learning Theory

Series
Stochastics Seminar
Time
Thursday, February 2, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sohail BahmaniECE, GaTech
We propose a new convex relaxation for the problem of solving (random) quadratic equations known as phase retrieval. The main advantage of the proposed method is that it operates in the natural domain of the signal. Therefore, it has significantly lower computational cost than the existing convex methods that rely on semidefinite programming and competes with the recent non-convex methods. In the proposed formulation the quadratic equations are relaxed to inequalities describing a "complex polytope". Then, using an *anchor vector* that itself can be constructed from the observations, a simple convex program estimates the ground truth as an (approximate) extreme point of the polytope. We show, using classic results in statistical learning theory, that with random measurements this convex program produces accurate estimates. I will also discuss some preliminary results on a more general class of regression problems where we construct accurate and computationally efficient estimators using anchor vectors.

Results on two variable orthogonal polynomials associated with Bernstein-Szego measures on the circle and square.

Series
Analysis Seminar
Time
Wednesday, February 1, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jeff GeronimoGeorgia Tech
The theory of two variable orthogonal polynomials is not very well developed. I will discuss some recent results on two variable orthogonal polynomials on the bicircle and time permitting on the square associate with orthogonality measures that are one over a trigonometric polynomial. Such measures have come to be called Bernstein-Szego measures. This is joint work with Plamen Iliev and Greg Knese.

Generating mapping class groups with two elements

Series
Geometry Topology Student Seminar
Time
Wednesday, February 1, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Justin LanierGeorgia Tech
Wajnryb showed that the mapping class group of a surface can be generated by two elements, each given as a product of Dehn twists. We will discuss a follow-up paper by Korkmaz, "Generating the surface mapping class group by two elements." Korkmaz shows that one of the generators may be taken to be a single Dehn twist instead. He then uses his construction to further prove the striking fact that the two generators can be taken to be periodic elements, each of order 4g+2, where g is the genus of the surface.

A General Mechanism of Instability in Hamiltonian Systems

Series
CDSNS Colloquium
Time
Monday, January 30, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
T.M-SearaUniv. Polit. Catalunya
We present a general mechanism to establish the existence of diffusing orbits in a large class of nearly integrable Hamiltonian systems. Our approach relies on successive applications of the `outer dynamics' along homoclinic orbits to a normally hyperbolic invariant manifold. The information on the outer dynamics is encoded by a geometrically defined map, referred to as the `scattering map'. We find pseudo-orbits of the scattering map that keep moving in some privileged direction. Then we use the recurrence property of the `inner dynamics', restricted to the normally hyperbolic invariant manifold, to return to those pseudo-orbits. Finally, we apply topological methods to show the existence of true orbits that follow the successive applications of the two dynamics. This method differs, in several crucial aspects, from earlier works. Unlike the well known `two-dynamics' approach, the method relies heavily on the outer dynamics alone. There are virtually no assumptions on the inner dynamics, as its invariant objects (e.g., primary and secondary tori, lower dimensional hyperbolic tori and their stable/unstable manifolds, Aubry-Mather sets) are not used at all. The method applies to unperturbed Hamiltonians of arbitrary degrees of freedom that are not necessarily convex. In addition, this mechanism is easy to verify (analytically or numerically) in concrete examples, as well as to establish diffusion in generic systems.

Pages