Wednesday, November 19, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Brian Street – University of Wisconsin, Madison
This talk concerns a theory of "multiparameter singularintegrals." The Calderon-Zygmund theory of singular integrals is a welldeveloped and general theory of singular integrals--in it, singularintegrals are associated to an underlying family of "balls" B(x,r) on theambient space. We talk about generalizations where these balls depend onmore than one "radius" parameter B(x,r_1,r_2,\ldots, r_k). Thesegeneralizations contain the classical "product theory" of singularintegrals as well as the well-studied "flag kernels," but also include moregeneral examples. Depending on the assumptions one places on the balls,different aspects of the Calderon-Zygmund theory generalize.
Wednesday, November 19, 2014 - 02:01 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Elizabeth Bolduc – Georgia Tech
The Dehn Nielsen Baer Theorem states that the extended mapping class group is isomorphic to the outer automorphisms of π1(Sg). The theorem highlights the connection between the topological invariant of distinct symmetries of a space and its fundamental group. This talk will incorporate ideas from algebra, topology, and hyperbolic geometry!
Tuesday, November 18, 2014 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Galyna Livshyts – Kent State University
The perimeter of a convex set in R^n with respect to a given measure is the measure's density averaged against the surface measure of the set. It was proved by Ball in 1993 that the perimeter of a convex set in R^n with respect to the standard Gaussian measure is asymptotically bounded from above by n^{1/4}. Nazarov in 2003 showed the sharpness of this bound. We are going to discuss the question of maximizing the perimeter of a convex set in R^n with respect to any log-concave rotation invariant probability measure. The latter asymptotic maximum is expressed in terms of the measure's natural parameters: the expectation and the variance of the absolute value of the random vector distributed with respect to the measure. We are also going to discuss some related questions on the geometry and isoperimetric properties of log-concave measures.
Tuesday, November 18, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Luis Vega – BCAM-Basque Center for Applied Mathematics (Scientific Director) and University of the Basque Country UPV/EHU – lvega@bcamath.org
In the first part of the talk I shall present a linear model based
on the Schrodinger equation with constant coefficient and periodic
boundary conditions that explains the so-called Talbot effect in optics.
In the second part I will make a connection
of this Talbot effect with turbulence through the Schrodinger map which
is a geometric non-linear partial differential equation.
Monday, November 17, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Mohammad Farazmand – GA Tech Physics
Recent experimental and numerical observations have shown the significance
of the Basset--Boussinesq memory term on the dynamics of small spherical
rigid particles (or inertial particles) suspended in an ambient fluid flow.
These observations suggest an algebraic decay to an asymptotic state, as
opposed to the exponential convergence in the absence of the memory term.
I discuss the governing equations of motion for the inertial particles,
i.e. the Maxey-Riley equation, including a fractional order derivative in
time. Then I show that the observed algebraic decay is a universal property
of the Maxey--Riley equation. Specifically, the particle velocity decays
algebraically in time to a limit that is O(\epsilon)-close to the fluid
velocity, where 0<\epsilon<<1 is proportional to the square of the ratio of
the particle radius to the fluid characteristic length-scale. These results
follows from a sharp analytic upper bound that we derive for the particle
velocity.
Monday, November 17, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
David Gepner – Purdue University
The algebraic K-theory of the sphere spectrum, K(S), encodes significant information in both homotopy theory and differential topology. In order to understand K(S), one can apply the techniques of chromatic homotopy theory in an attempt to approximate K(S) by certain localizations K(L_n S). The L_n S are in turn approximated by the Johnson-Wilson spectra E(n) = BP[v_n^{-1}], and it is not unreasonable to expect to be able to compute K(BP). This would lead inductively to information about K(E(n)) via the conjectural fiber sequence K(BP) --> K(BP) --> K(E(n)). In this talk, I will explain the basics of the K-theory of ring spectra, define the ring spectra of interest, and construct some actual localization sequences in their K-theory. I will then use trace methods to show that it the actual fiber of K(BP) --> K(E(n)) differs from K(BP), meaning that the situation is more complicated than was originally hoped. All this is joint work with Ben Antieau and Tobias Barthel.
Friday, November 14, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Ralph Morrison – Berkeley
Smooth curves in the tropical plane correspond to unimodulartriangulations of lattice polygons. The skeleton of such a curve is ametric graph whose genus is the number of lattice points in the interior ofthe polygon. In this talk we report on work concerning the followingrealizability problem: Characterize all metric graphs that admit a planarrepresentation as a smooth tropical curve. For instance, about 29.5 percentof metric graphs of genus 3 have this property. (Joint work with SarahBrodsky, Michael Joswig, and Bernd Sturmfels.)
Friday, November 14, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John Etnyre – Georgia Tech
This is the fifth of several talks discussing embeddings of manifolds. I will discuss some general results for smooth manifolds, but focus on embeddings of contact manifolds into other contact manifolds. Particular attention will be paid to embeddings of contact 3-manifolds in contact 5-manifolds. I will discuss two approaches to this last problem that are being developed jointly with Yanki Lekili.
Friday, November 14, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jean Savinien – University of Lorraine, Metz, France
We build a family of
spectral triples for a discrete aperiodic tiling space, and derive the
associated Connes distances. (These are non commutative geometry
generalisations of Riemannian structures, and associated geodesic
distances.) We show how their metric properties lead to a characterisation
of high aperiodic order of the tiling. This is based on joint works with
J. Kellendonk and D. Lenz.