Monday, October 29, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yankı Lekili – University of Cambridge & Simons Center
We study some finite quotients of the A_n Milnor fibre which coincide with the Stein surfaces that appear in Fintushel and Stern's rational blowdown construction. We show that these Stein surfaces have no exact Lagrangian submanifolds by using the already available and deep understanding of the Fukaya category of the A_n Milnor fibre coming from homological mirror symmetry. On the contrary, we find Floer theoretically essential monotone Lagrangian tori, finitely covered by the monotone tori that we studied in the A_n Milnor fibre. We conclude that these Stein surfaces have non-vanishing symplectic cohomology. This is joint work with M. Maydanskiy.
The fully developed speckle(multiplicative noise) naturally appears in coherent imaging systems, such as synthetic aperture radar imaging systems. Since the speckle is multiplicative, it makes difficult to interpret observed data. In this talk, we introduce total variation based variational model and convex optimization algorithm(linearized proximal alternating minimization algorithm) to efficiently remove speckle in synthetic aperture radar imaging systems. Numerical results show that our proposed methods outperform the augmented Lagrangian based state-of-the-art algorithms.
A hereditary chip-firing model is a chip-firing game whose dynamics
are induced by an abstract simplicial complex \Delta on the vertices
of a graph, where \Delta may be interpreted as encoding graph gluing
data. These models generalize two classical chip-firing games: The
Abelian sandpile model, where \Delta is disjoint collection of
points, and the cluster firing model, where \Delta is a single
simplex. Two fundamental properties of these classical models extend
to arbitrary hereditary chip-firing models: stabilization is
independent of firings chosen (the Abelian property) and each
chip-firing equivalence class contains a unique recurrent
configuration. We will present an explicit bijection between the
recurrent configurations of a hereditary chip-firing model on a graph
G and the spanning trees of G and, if time permits, we will discuss
chip-firing via gluing in the context of binomial ideals and metric
graphs.
A branching random walk consists of a population of individuals each of whom perform a random walk step before giving birth to a random number of offspring and dying. The offspring then perform their own independent random steps and branching. I will present classic results on the convergence of the empirical particle measure to the Gaussian distribution, then present new results on large deviations of this empirical measure. The talk will be self-contained and can serve as an introduction to both the branching random walk and large deviation theory. The format will be 40 minutes of introduction and presentation, followed by a short break and then 20 minutes of discussion of open problems for those interested.
Thursday, October 25, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
William T. Trotter – Math, GT
Over the past 40 years, researchers
have made many connections between the
dimension of posets and the issue of planarity
for graphs and diagrams, but there appears
to be little work connecting
dimension to structural graph theory. This situation
has changed dramatically in the last several months. At the Robin Thomas birthday conference, Gwenael
Joret, made the following striking conjecture, which
has now been turned into a theorem: The dimension
of a poset is bounded in terms of its height and the
tree-width of its cover graph. In this talk, I will present the proof of this result. The general contours of
the argument should be accessible to graph theorists and combinatorists (faculty and students) without deep knowledge of either dimension or tree-width.
The proof of the theorem was
accomplished by a team of six researchers: Gwenael Joret, Piotr Micek, Kevin Milans, Tom Trotter,
Bartosz Walczak and Ruidong Wang.
Isoperimetric problems in Gaussian spaces have been studied since the 1970s. The study of these problems involve geometric measure theory, symmetrization techniques, spherical geometry and the study of diffusions associated with the heat equation. I will discuss some of the main ideas and results in this area along with some new results jointly with Joe Neeman.
Wednesday, October 24, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tetsuya Ito – UBC
We will give an overview of open book foliation method by emphasizing the aspect that it is a generalization of Birman-Menasco's braid foliation theory. We explain how surfaces in open book reflects topology and (contact) geometry of underlying 3-manifolds, and will give several applications. This talk is based on joint work with Keiko Kawamuro.