Seminars and Colloquia by Series

Mathematics of Crime

Series
School of Mathematics Colloquium
Time
Tuesday, April 24, 2012 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Andrea BertozziUCLA Math
There is an extensive applied mathematics literature developed for problems in the biological and physical sciences. Our understanding of social science problems from a mathematical standpoint is less developed, but also presents some very interesting problems. This lecture uses crime as a case study for using applied mathematical techniques in a social science application and covers a variety of mathematical methods that are applicable to such problems. We will review recent work on agent based models, methods in linear and nonlinear partial differential equations, variational methods for inverse problems and statistical point process models. From an application standpoint we will look at problems in residential burglaries and gang crimes. Examples will consider both "bottom up" and "top down" approaches to understanding the mathematics of crime, and how the two approaches could converge to a unifying theory.

Overconvergent Lattices and Berkovich Spaces

Series
Algebra Seminar
Time
Tuesday, April 24, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew DudzikUC Berkeley
The construction of the Berkovich space associated to a rigid analytic variety can be understood in a general topological framework as a type of local compactification or uniform completion, and more generally in terms of filters on a lattice. I will discuss this viewpoint, as well as connections to Huber's theory of adic spaces, and draw parallels with the usual metric completion of $\mathbb{Q}$.

Universality of the global fluctuations for the eigenvectors of Wigner random matrices

Series
Stochastics Seminar
Time
Tuesday, April 24, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
F. Benaych-GeorgesUniversite Pierre et Marie Curie
Many of the asymptotic spectral characteristics of a symmetric random matrix with i.i.d. entries (such a matrix is called a "Wigner matrix") are said to be "universal": they depend on the exact distribution of the entries only via its first moments (in the same way that the CLT gives the asymptotic fluctuations of the empirical mean of i.i.d. variables as a function of their second moment only). For example, the empirical spectral law of the eigenvalues of a Wigner matrix converges to the semi-circle law if the entries have variance 1, and the extreme eigenvalues converge to -2 and 2 if the entries have a finite fourth moment. This talk will be devoted to a "universality result" for the eigenvectors of such a matrix. We shall prove that the asymptotic global fluctuations of these eigenvectors depend essentially on the moments with orders 1, 2 and 4 of the entries of the Wigner matrix, the third moment having surprisingly no influence.

Perturbation Theory and its Application to Complex Biological Networks --A quantification of systematic features of biological networks

Series
Dissertation Defense
Time
Tuesday, April 24, 2012 - 11:00 for 2 hours
Location
Skiles 006
Speaker
Yao LiSchool of Mathematics, Georgia Tech
The primary objective of this thesis is to make a quantitative study of complex biological networks. Our fundamental motivation is to obtain the statistical dependency between modules by injecting external noise. To accomplish this, a deep study of stochastic dynamical systems would be essential. The first part is about the stochastic dynamical system theory. The classical estimation of invariant measures of Fokker-Planck equations is improved by the level set method. Further, we develop a discrete Fokker-Planck-type equation to study the discrete stochastic dynamical systems. In the second part, we quantify systematic measures including degeneracy, complexity and robustness. We also provide a series of results on their properties and the connection between them. Then we apply our theory to the JAK-STAT signaling pathway network.

Optimization of two-link and three-link snake-like locomotion

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 23, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fangxu JingGT Math
We analyze two-link (or three-link) 2D snake like locomotions and discuss the optimization of the motion. The snake is modeled as two (or three) identical links connected via hinge joints and the relative angles between the links are prescribed as periodic actuation functions. An essential feature of the locomotion is the anisotropy of friction coefficients. The dynamics of the snake is analyzed numerically, as well as analytically for small amplitude actuations of the relative angles. Cost of locomotion is defined as the ratio between distance traveled by the snake and the energy expenditure within one period. Optimal conditions of the highest efficiency in terms of the friction coefficients and the actuations are discussed for the model.

On a weak form of Arnold diffusion in arbitrary degrees of freedom

Series
CDSNS Colloquium
Time
Monday, April 23, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vadim KaloshinUniv. of Maryland
Consider a generic perturbation of a nearly integrable system of {\it arbitrary degrees of freedom $n\ge 2$ system}\[H_0(p)+\eps H_1(\th,p,t),\quad \th\in \T^n,\ p\in B^n,\ t\in \T=\R/\T,\]with strictly convex $H_0$. Jointly with P.Bernard and K.Zhang we prove existence of orbits $(\th,p)(t)$ exhibiting Arnold diffusion \[\|p(t)-p(0) \| >l(H_1)>0 \quad \textup{independently of }\eps.\]Action increment is independent of size of perturbation$\eps$, but does depend on a perturbation $\eps H_1$.This establishes a weak form of Arnold diffusion. The main difficulty in getting rid of $l(H_1)$ is presence of strong double resonances. In this case for $n=2$we prove existence of normally hyperbolic invariant manifolds passing through these double resonances. (joint with P. Bernard and K. Zhang)

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Monday, April 23, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Will PerkinsGeorgia Tech
A discussion of the paper "RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction" by Washietl et al (NAR, 2012).

Matchings in hypergraphs

Series
Combinatorics Seminar
Time
Friday, April 20, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tomasz LuczakEmory University and Adam Mickiewicz University, Poznan
Let H_k(n,s) be a k-uniform hypergraphs on n vertices in which the largest matching has s edges. In 1965 Erdos conjectured that the maximum number of edges in H_k(n,s) is attained either when H_k(n,s) is a clique of size ks+k-1, or when the set of edges of H_k(n,s) consists of all k-element sets which intersect some given set S of s elements. In the talk we prove this conjecture for k = 3 and n large enough. This is a joint work with Katarzyna Mieczkowska.

Stability of ODE with colored noise forcing.

Series
CDSNS Colloquium
Time
Friday, April 20, 2012 - 11:10 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Timothy BlassCarnegie Melon University
I will discuss recent work on the stability of linear equations under parametric forcing by colored noise. The noises considered are built from Ornstein-Uhlenbeck vector processes. Stability of the solutions is determined by the boundedness of their second moments. Our approach uses the Fokker-Planck equation and the associated PDE for the marginal moments to determine the growth rate of the moments. This leads to an eigenvalue problem, which is solved using a decomposition of the Fokker-Planck operator for Ornstein-Uhlenbeck processes into "ladder operators." The results are given in terms of a perturbation expansion in the size of the noise. We have found very good agreement between our results and numerical simulations. This is joint work with L.A. Romero.

Pages