Seminars and Colloquia by Series

Nielsen realization problems

Series
School of Mathematics Colloquium
Time
Friday, December 4, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Bena TshishikuBrown University

Please Note: This is the opening talk of the 2020 Tech Topology Conference http://ttc.gatech.edu

For a manifold M, the (generalized) Nielsen realization problem asks if the surjection Diff(M) → π_0 Diff(M) is split, where Diff(M) is the diffeomorphism group. When M is a surface, this question was posed by Thurston in Kirby's problem list and was addressed by Morita. I will discuss some more recent work on Nielsen realization problems with connections to flat fiber bundles, K3 surfaces, and smooth structures on hyperbolic manifolds.

A Lévy-driven process with matrix scaling exponent

Series
Stochastics Seminar
Time
Thursday, December 3, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/504188361
Speaker
B. Cooper BonieceWashington University in St. Louis

In the past several decades, scale invariant stochastic processes have been used in a wide range of applications including internet traffic modeling and hydrology.  However, by comparison to univariate scale invariance, far less attention has been paid to characteristically multivariate models that display aspects of scaling behavior the limit theory arguably suggests is most natural.
 
In this talk, I will introduce a new scale invariance model called operator fractional Lévy motion and discuss some of its interesting features, as well as some aspects of wavelet-based estimation of its scaling exponents. This is related to joint work with Gustavo Didier (Tulane University), Herwig Wendt (CNRS, IRIT Univ. of Toulouse) and Patrice Abry (CNRS, ENS-Lyon).

Variations of canonical measures: Riemann surfaces, graphs and hybrid curves

Series
Algebra Seminar
Time
Wednesday, December 2, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Noema Nicolussi

In the last years, connections between graphs and Riemann surfaces have been
discovered on several different levels. In particular, graphs are closely related
to singular Riemann surfaces and the boundary in the Deligne–Mumford com-
pactification of moduli spaces. Moreover, in both settings there is a notion of a
canonical measure (the Arakelov–Bergman and Zhang measures) which reflects
crucial geometric information.
In this talk, we focus on the following question: what is the limit of the canon-
ical measures along a family of Riemann surfaces? Combining the canonical
measures on Riemann surfaces and metric graphs, we obtain a full description
and a new compactification of the moduli space of Riemann surfaces in terms
of hybrid curves.

Based on joint work with Omid Amini (École polytechnique).

BlueJeans link: https://bluejeans.com/476849994

The Akbulut-Kirby conjecture and the slice-ribbon conjecture

Series
Geometry Topology Student Seminar
Time
Wednesday, December 2, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
online
Speaker
Weizhe Shen

A knot in the 3-sphere is slice if it bounds a smooth disc in the 4-ball. A knot is ribbon if it bounds a self-intersecting disc with only singularities that are closed arcs consisting of intersection points of the disc with itself. Every ribbon knot is a slice knot; the converse is a famous unsolved conjecture of Fox. This talk will show some recent interesting progress around the slice-ribbon conjecture.

Embedding spanning structures into vertex-ordered graphs

Series
Graph Theory Seminar
Time
Tuesday, December 1, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Andrew TreglownUniversity of Birmingham

Over recent years there has been much interest in both Turán and Ramsey properties of vertex ordered graphs (i.e., graphs equipped with an ordering of their vertex set). In a recent paper, József Balogh, Lina Li and I initiated the study of embedding spanning structures into vertex ordered graphs. In particular, we introduced a general framework for approaching the problem of determining the minimum degree threshold for forcing a perfect $H$-tiling in an ordered graph. In this talk I will discuss this work, in particular emphasizing how we adapt the regularity and absorbing methods to be applicable in the ordered setting.

Taut foliations and Dehn surgery along positive braid knots

Series
Geometry Topology Seminar
Time
Monday, November 30, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
online
Speaker
Siddhi KrishnaGeorgia Tech

The L-space conjecture has been in the news a lot lately. It predicts a surprising relationship between the algebraic, geometric, and Floer-homological properties of a 3--manifold Y. In particular, it predicts exactly which 3-manifolds admit a ``taut foliation". In this talk, I'll discuss some of my past and forthcoming work investigating these connections. In particular, I'll discuss a strategy for building taut foliations manifolds obtained by Dehn surgery along knots realized as closures of ``positive braids". As an application, I will show how taut foliations can be used to obstruct positivity for cable knots. All are welcome; no background in foliation or Floer homology theories will be assumed.

https://bccte.zoom.us/j/91883463721

Meeting ID: 918 8346 3721

 

Weak saturation numbers of complete bipartite graphs

Series
Graph Theory Seminar
Time
Tuesday, November 24, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Taísa MartinsUniversidade Federal Fluminense

The notion of weak saturation was introduced by Bollobás in 1968. A graph $G$ on $n$ vertices is weakly $F$-saturated if the edges of $E(K_n) \setminus  E(G)$ can be added to $G$, one edge at a time, in such a way that every added edge creates a new copy of $F$. The minimum size of a weakly $F$-saturated graph $G$ of order $n$ is denoted by $\mathrm{wsat}(n, F)$. In this talk, we discuss the weak saturation number of complete bipartite graphs and determine $\mathrm{wsat}(n, K_{t,t})$ whenever $n > 3t-4$. For fixed $1

Frames by Operator Orbits

Series
Analysis Seminar
Time
Tuesday, November 24, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Carlos CabrelliUniversity of Buenos Aires

I will review some results on the question of when the orbits $\{ T^j g : j \in J, g \in G \}$ of a bounded operator $T$ acting on a Hilbert space $\mathcal{H}$ with $G \subset \mathcal{H}$ form a frame of $\mathcal{H}$. I will also comment on recent advances. This is motivated by the Dynamical Sampling problem that consists of recovering a time-evolving signal from its space-time samples. 

Low Dimensional Topology and Cobordism Groups: Organizing spaces using algebra

Series
Undergraduate Seminar
Time
Monday, November 23, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
Bluejeans meeting https://bluejeans.com/759112674
Speaker
Dr. Miriam KuzbaryGeorgia Tech

Determining when two objects have “the same shape” is difficult; this difficulty depends on the dimension we are working in. While many of the same techniques work to study things in dimensions 5 and higher, we can better understand dimensions 1, 2, and 3 using other methods. We can think of 4-dimensional space as the “bridge” between low-dimensional behavior and high-dimensional behavior. One way to understand the possibilities in each dimension is to examine objects called cobordisms: if an (n+1)-dimensional space has an ``edge,”  then that edge is itself an n-dimensional space. We say that two n-dimensional spaces are cobordant if together they form the edge of an (n+1)-dimensional space. Using the idea of spaces related by cobordism, we can form a group. In this way, we can attempt to understand higher dimensions using clues from lower dimensions and organize this information using algebra. In this talk, I will discuss different types of cobordism groups and how to study them using tools from a broad range of mathematical areas.

Time-parallel wave propagation in heterogeneous media aided by deep learning

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 23, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/884917410
Speaker
Richard TsaiUT Austin

 

We present a deep learning framework for learning multiscale wave propagation in heterogeneous media. The framework involves the construction of linear feed-forward networks (experts) that specialize in different media groups and a nonlinear "committee" network that gives an improved approximation of wave propagation in more complicated media.  The framework is then applied to stabilize the "parareal" schemes of Lions, Maday, and Turinici, which are time-parallelization schemes for evolutionary problems. 

Pages