Seminars and Colloquia by Series

Flip processes on finite graphs and dynamical systems they induce on graphons

Series
Combinatorics Seminar
Time
Friday, December 11, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke)
Speaker
Jan HladkyCzech Academy of Sciences

We introduce a class of random graph processes, which we call flip processes. Each such process is given by a rule which is just a function $\mathcal{R}:\mathcal{H}_k\rightarrow \mathcal{H}_k$ from all labelled $k$-vertex graphs into itself ($k$ is fixed). Now, the process starts with a given $n$-vertex graph $G_0$. In each step, the graph $G_i$ is obtained by sampling $k$ random vertices $v_1,\ldots,v_k$ of $G_{i-1}$ and replacing the induced graph $G_{i-1}[v_1,\ldots,v_k]$ by $\mathcal{R}(G_{i-1}[v_1,\ldots,v_k])$. This class contains several previously studied processes including the Erdos-Renyi random graph process and the random triangle removal.

Given a flip processes with a rule $\mathcal{R}$ we construct time-indexed trajectories $\Phi:\mathcal{W}\times [0,\infty)\rightarrow\mathcal{W}$ in the space of graphons. We prove that with high probability, starting with a large finite graph $G_0$ which is close to a graphon $W_0$, the flip process will follow the trajectory $(\Phi(W_0,t))_{t=0}^\infty$ (with appropriate rescaling of the time).

These graphon trajectories are then studied from the perspective of dynamical systems. We prove that two trajectories cannot form a confluence, give an example of a process with an oscilatory trajectory, and study stability and instability of fixed points.

Joint work with Frederik Garbe, Matas Sileikis and Fiona Skerman.

Asymptotic dimension of minor-closed families and beyond

Series
Graph Theory Seminar
Time
Tuesday, December 8, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Chun-Hung LiuTexas A&M University

The asymptotic dimension of metric spaces is an important notion in geometric group theory. The metric spaces considered in this talk are the ones whose underlying spaces are the vertex-sets of (edge-)weighted graphs and whose metrics are the distance function in weighted graphs. A standard compactness argument shows that it suffices to consider the asymptotic dimension of classes of finite weighted graphs. We prove that the asymptotic dimension of any minor-closed family of weighted graphs, any class of weighted graphs of bounded tree-width, and any class of graphs of bounded layered tree-width are at most 2, 1,and 2, respectively. The first result solves a question of Fujiwara and Papasoglu; the second and third results solve a number of questions of Bonamy, Bousquet, Esperet, Groenland, Pirot and Scott. These bounds for asymptotic dimension are optimal and generalize and improve some results in the literature, including results for Riemannian surfaces and Cayley graphs of groups with a forbidden minor.

Nielsen realization problems

Series
School of Mathematics Colloquium
Time
Friday, December 4, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Bena TshishikuBrown University

Please Note: This is the opening talk of the 2020 Tech Topology Conference http://ttc.gatech.edu

For a manifold M, the (generalized) Nielsen realization problem asks if the surjection Diff(M) → π_0 Diff(M) is split, where Diff(M) is the diffeomorphism group. When M is a surface, this question was posed by Thurston in Kirby's problem list and was addressed by Morita. I will discuss some more recent work on Nielsen realization problems with connections to flat fiber bundles, K3 surfaces, and smooth structures on hyperbolic manifolds.

Universality of Random Permutations

Series
Combinatorics Seminar
Time
Friday, December 4, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke)
Speaker
Xiaoyu HeStanford University

It is a classical fact that for any c > 0, a random permutation of length n = (1+c)k^2/4 typically contains a monotone subsequence of length k. As a far-reaching generalization, Alon conjectured that for this same n, a typical n-permutation is k-universal, meaning that it simultaneously contains every k-pattern. He also gave a simple proof for the fact that if n is increased to Ck^2 log k, then a typical n-permutation is k-universal. Our main result is that the same statement holds for n = Ck^2 log log k, getting almost all of the way to Alon's conjecture.

In this talk we give an overview of the structure-vs-randomness paradigm which is a key ingredient in the proof, and a sketch of the other main ideas. Based on joint work with Matthew Kwan.

A Lévy-driven process with matrix scaling exponent

Series
Stochastics Seminar
Time
Thursday, December 3, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/504188361
Speaker
B. Cooper BonieceWashington University in St. Louis

In the past several decades, scale invariant stochastic processes have been used in a wide range of applications including internet traffic modeling and hydrology.  However, by comparison to univariate scale invariance, far less attention has been paid to characteristically multivariate models that display aspects of scaling behavior the limit theory arguably suggests is most natural.
 
In this talk, I will introduce a new scale invariance model called operator fractional Lévy motion and discuss some of its interesting features, as well as some aspects of wavelet-based estimation of its scaling exponents. This is related to joint work with Gustavo Didier (Tulane University), Herwig Wendt (CNRS, IRIT Univ. of Toulouse) and Patrice Abry (CNRS, ENS-Lyon).

Variations of canonical measures: Riemann surfaces, graphs and hybrid curves

Series
Algebra Seminar
Time
Wednesday, December 2, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Noema Nicolussi

In the last years, connections between graphs and Riemann surfaces have been
discovered on several different levels. In particular, graphs are closely related
to singular Riemann surfaces and the boundary in the Deligne–Mumford com-
pactification of moduli spaces. Moreover, in both settings there is a notion of a
canonical measure (the Arakelov–Bergman and Zhang measures) which reflects
crucial geometric information.
In this talk, we focus on the following question: what is the limit of the canon-
ical measures along a family of Riemann surfaces? Combining the canonical
measures on Riemann surfaces and metric graphs, we obtain a full description
and a new compactification of the moduli space of Riemann surfaces in terms
of hybrid curves.

Based on joint work with Omid Amini (École polytechnique).

BlueJeans link: https://bluejeans.com/476849994

The Akbulut-Kirby conjecture and the slice-ribbon conjecture

Series
Geometry Topology Student Seminar
Time
Wednesday, December 2, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
online
Speaker
Weizhe Shen

A knot in the 3-sphere is slice if it bounds a smooth disc in the 4-ball. A knot is ribbon if it bounds a self-intersecting disc with only singularities that are closed arcs consisting of intersection points of the disc with itself. Every ribbon knot is a slice knot; the converse is a famous unsolved conjecture of Fox. This talk will show some recent interesting progress around the slice-ribbon conjecture.

Embedding spanning structures into vertex-ordered graphs

Series
Graph Theory Seminar
Time
Tuesday, December 1, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Andrew TreglownUniversity of Birmingham

Over recent years there has been much interest in both Turán and Ramsey properties of vertex ordered graphs (i.e., graphs equipped with an ordering of their vertex set). In a recent paper, József Balogh, Lina Li and I initiated the study of embedding spanning structures into vertex ordered graphs. In particular, we introduced a general framework for approaching the problem of determining the minimum degree threshold for forcing a perfect $H$-tiling in an ordered graph. In this talk I will discuss this work, in particular emphasizing how we adapt the regularity and absorbing methods to be applicable in the ordered setting.

Taut foliations and Dehn surgery along positive braid knots

Series
Geometry Topology Seminar
Time
Monday, November 30, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
online
Speaker
Siddhi KrishnaGeorgia Tech

The L-space conjecture has been in the news a lot lately. It predicts a surprising relationship between the algebraic, geometric, and Floer-homological properties of a 3--manifold Y. In particular, it predicts exactly which 3-manifolds admit a ``taut foliation". In this talk, I'll discuss some of my past and forthcoming work investigating these connections. In particular, I'll discuss a strategy for building taut foliations manifolds obtained by Dehn surgery along knots realized as closures of ``positive braids". As an application, I will show how taut foliations can be used to obstruct positivity for cable knots. All are welcome; no background in foliation or Floer homology theories will be assumed.

https://bccte.zoom.us/j/91883463721

Meeting ID: 918 8346 3721

 

Weak saturation numbers of complete bipartite graphs

Series
Graph Theory Seminar
Time
Tuesday, November 24, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Taísa MartinsUniversidade Federal Fluminense

The notion of weak saturation was introduced by Bollobás in 1968. A graph $G$ on $n$ vertices is weakly $F$-saturated if the edges of $E(K_n) \setminus  E(G)$ can be added to $G$, one edge at a time, in such a way that every added edge creates a new copy of $F$. The minimum size of a weakly $F$-saturated graph $G$ of order $n$ is denoted by $\mathrm{wsat}(n, F)$. In this talk, we discuss the weak saturation number of complete bipartite graphs and determine $\mathrm{wsat}(n, K_{t,t})$ whenever $n > 3t-4$. For fixed $1

Pages