Seminars and Colloquia by Series

Optimal measures for three-point energies and semidefinite programming

Series
Analysis Seminar
Time
Wednesday, February 12, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josiah ParkGeorgia Tech

Given a potential function of three vector arguments, $f(x,y,z)$, which is $O(n)$-invariant, $f(Qx,Qy,Qz)=f(x,y,z)$ for all $Q$ orthogonal, we use semidefinite programming bounds to determine optimizing probability measures for interaction energies of the form $\int\int\int f(x,y,z) d\mu(x)d\mu(y)d\mu(z)$ over the sphere. This approach builds on previous use of such bounds in the discrete setting by Bachoc-Vallentin, Cohn-Woo, and Musin, and is successful for kernels which can be shown to have expansions in a particular basis, for instance certain symmetric polynomials in inner products $u=\langle x,y \rangle$, $v=\langle y,z\rangle$, and $t=\langle z, x \rangle$. For other kernels we pose conjectures on the behavior of optimizers, partially inferred through numerical studies.

Quasiperiodic Schrodinger operators: nonperturbative analysis of small denominators, universal self-similarity, and critical phenomena.

Series
Job Candidate Talk
Time
Tuesday, February 11, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
TBA
Speaker
Svetlana JitomirskayaUCI

We will give a brief introduction to the spectral theory of ergodic operators. Then we discuss several remarkable spectral phenomena present in the class of quasiperiodic operators, as well as the nonperturbative approach to small denominator problems that has been behind much of the related progress.  In particular, we will talk about the almost Mathieu (aka Harper's) operator - a model heavily studied in physics literature and linked to several Nobel prizes (in addition to one Fields medal). We will describe several results on this model that resolve some long-standing conjectures.

Joint UGA-GT Topology Seminar at GT: Brieskorn spheres bounding rational balls

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kyle LarsonUGA

Fintushel and Stern showed that the Brieskorn sphere Σ(2, 3, 7) bounds a rational homology ball, while its non-trivial Rokhlin invariant obstructs it from bounding an integral homology ball. It is known that their argument can be modified to show that the figure-eight knot is rationally slice, and we use this fact to provide the first additional examples of Brieskorn spheres that bound rational homology balls but not integral homology balls, including two infinite families. This is joint work with Selman Akbulut.

Joint UGA-GT Topology Seminar at GT: Homotopy invariants of homology cobordism and knot concordance

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kent OrrIndiana University
Modern homotopy invariants of links derive from Gauss’ work on linking numbers.  Many modern examples have arisen following Milnor’s early work.  I will define and investigate a `universal' homotopy invariant of homology cobordism classes of orientable 3-manifolds.  Time permitting (unlikely,) the resulting equivalence classes yield further invariants using filtrations, and classical and von Neumann signatures.  Primary focus will be given to defining these
invariants, and the tools essential to their definition.

Asymptotic-preserving and positivity-preserving numerical methods for a class of stiff kinetic equations

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 10, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Jingwei HuPurdue

Kinetic equations play an important role in multiscale modeling hierarchy. It serves as a basic building block that connects the microscopic particle models and macroscopic continuum models. Numerically approximating kinetic equations presents several difficulties: 1) high dimensionality (the equation is in phase space); 2) nonlinearity and stiffness of the collision/interaction terms; 3) positivity of the solution (the unknown is a probability density function); 4) consistency to the limiting fluid models; etc. I will start with a brief overview of the kinetic equations including the Boltzmann equation and the Fokker-Planck equation, and then discuss in particular our recent effort of constructing efficient and robust numerical methods for these equations, overcoming some of the aforementioned difficulties. This is joint work with Ruiwen Shu (University of Maryland).

On mixing properties of infinite measure preserving systems

Series
CDSNS Colloquium
Time
Monday, February 10, 2020 - 11:15 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Dmitry DolgopyatUniversity of Maryland

We present several new results concerning mixing properties of
hyperbolic systems preserving an infinite measure making a particular
emphasis on mixing for extended systems. This talk is based on a joint
work with Peter Nandori.

Characterizing Smoothness of Quotients

Series
Job Candidate Talk
Time
Monday, February 10, 2020 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matthew SatrianoUniversity of Waterloo

Given an action of a finite group $G$ on a complex vector space $V$, the Chevalley-Shephard-Todd Theorem gives a beautiful characterization for when the quotient variety $V/G$ is smooth. In his 1986 ICM address, Popov asked whether this criterion could be extended to the case of Lie groups. I will discuss my contributions to this problem and some intriguing questions in combinatorics that this raises. This is based on joint work with Dan Edidin.

Scalefree hardness of the Euclidean TSP

Series
Combinatorics Seminar
Time
Friday, February 7, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wesley PegdenCarnegie Mellon University

We  show  that  if  $P\neq NP$,  then  a  wide  class  of  TSP heuristics fail to approximate the length of the TSP to asymptotic 
optimality, even for random Euclidean instances.  Previously, this result was not even known for any heuristics (greedy, etc) used in practice.  As an application, we show that when  using  a  heuristic from  this  class,  a  natural  class  of  branch-and-bound algorithms takes exponential time to find an optimal tour (again, even on a random point-set),  regardless  of  the  particular  branching  strategy  or lower-bound algorithm used.

Learning functions varying along an active subspace

Series
SIAM Student Seminar
Time
Friday, February 7, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao LiuGT Math

Many functions of interest are in a high-dimensional space but exhibit low-dimensional structures. This work studies regression of a $s$-Hölder function $f$ in $\mathbb{R}^D$ which varies along an active subspace of dimension $d$ while $d\ll D$. A direct approximation of $f$ in $\mathbb{R}^D$ with an $\varepsilon$ accuracy requires the number of samples $n$ in the order of $\varepsilon^{-(2s+D)/s}$. In this work, we modify the Generalized Contour Regression (GCR) algorithm to estimate the active subspace and use piecewise polynomials for function approximation. GCR is among the best estimators for the active subspace, but its sample complexity is an open question. Our modified GCR improves the efficiency over the original GCR and leads to a mean squared estimation error of $O(n^{-1})$ for the active subspace, when $n$ is sufficiently large. The mean squared regression error of $f$ is proved to be in the order of $\left(n/\log n\right)^{-\frac{2s}{2s+d}}$, where the exponent depends on the dimension of the active subspace $d$ instead of the ambient space $D$. This result demonstrates that GCR is effective in learning low-dimensional active subspaces. The convergence rate is validated through several numerical experiments.

This is a joint work with Wenjing Liao.

Detecting gerrymandering with mathematical rigor

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, February 6, 2020 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wesley PegdenMathematics, Carnegie Mellon University

Please Note: (Refreshments will be served at 2:30pm after the lecture.)

In recent years political parties have more and more expertly 
crafted political districtings to favor one side or another, while at 
the same time, entirely new techniques to detect and measure these 
efforts are being developed.

I will discuss a rigorous method which uses Markov chains---random 
walks---to statistically assess gerrymandering of political districts 
without requiring heuristic validation of the structures of the Markov 
chains which arise in the redistricting context.  In particular, we will 
see two examples where this methodology was applied in successful 
lawsuits which overturned district maps in Pennsylvania and North Carolina.

Pages