Seminars and Colloquia by Series

Large cycles in essentially 4-connected planar graphs

Series
Graph Theory Working Seminar
Time
Thursday, January 30, 2020 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael WigalGeorgia Tech

Tutte proved that every 4-connected planar graph contains a Hamilton cycle, but
there are 3-connected $n$-vertex graphs whose longest cycles have length
$\Theta(n^{\log_32})$. On the other hand,  Jackson and Wormald proved that an
essentially 4-connected $n$-vertex planar graph contains a cycle of
length at least $(2n+4)/5$, which was improved to $5(n+2)/8$ by Fabrici {\it et al}.  We improve this bound to $\lceil (2n+6)/3\rceil$ for $n\ge 6$ by proving a quantitative version of a result of Thomassen,
 and the bound is best possible.

Heat semigroup approach to isoperimetric inequalities in metric measure spaces

Series
Stochastics Seminar
Time
Thursday, January 30, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patricia Alonso-RuizTexas A&M University

The classical isoperimetric problem consists in finding among all sets with the same volume (measure) the one that minimizes the surface area (perimeter measure). In the Euclidean case, balls are known to solve this problem. To formulate the isoperimetric problem, or an isoperimetric inequality, in more general settings, requires in particular a good notion of perimeter measure.

The starting point of this talk will be a characterization of sets of finite perimeter original to Ledoux that involves the heat semigroup associated to a given stochastic process in the space. This approach put in connection isoperimetric problems and functions of bounded variation (BV) via heat semigroups, and we will extend these ideas to develop a natural definition of BV functions and sets of finite perimeter on metric measure spaces. In particular, we will obtain corresponding isoperimetric inequalies in this setting.

The main assumption on the underlying space will be a non-negative curvature type condition that we call weak Bakry-Émery and is satisfied in many examples of interest, also in fractals such as (infinite) Sierpinski gaskets and carpets. The results are part of joint work with F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev.

Improved bounds for Hadwiger covering problem via the thin shell estimates

Series
High Dimensional Seminar
Time
Wednesday, January 29, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Speaker
Han HuangGeorgia Tech

Let $K$ be a n dimensional convex body with of volume $1$. and barycenter of $K$ is the origin.  It is known that $|K \cap -K|>2^{-n}$.  Via thin shell estimate by Lee-Vempala (earlier versions were done by Guedon-Milman, Fleury, Klartag), we improve the bound by a sub-exponential factor.  Furthermore, we can improve  the Hadwiger’s Conjecture in the non-symmetric case by a sub-exponential factor.  This is a joint work with Boaz A. Slomka, Tomasz Tkocz, and Beatrice-Helen Vritsiou. 

Periodic Orbit Decomposition of Shear Flow Dynamics

Series
Other Talks
Time
Wednesday, January 29, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Howey N201
Speaker
N. Burak Budanur IST, Austria
Several recent papers presented exact time-periodic solutions in shear flow simulations at moderate Reynolds numbers. Although some of these studies demonstrated similarities between turbulence and the unstable periodic orbits, whether one can utilize these orbits for turbulence modeling remained unclear. We argue that this can be achieved by measuring the frequency of turbulence's visits to the periodic orbits. To this end, we adapt methods from computational topology and develop a metric that quantifies shape similarity between the projections of turbulent trajectories and periodic orbits. We demonstrate our method by applying it in a numerical study of the three-dimensional Navier--Stokes equations under sinusoidal forcing. Streamed online: https://gatech.bluejeans.com/7678987299

4-Dimensional Knot Surgery

Series
Geometry Topology Student Seminar
Time
Wednesday, January 29, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anubhav MukherjeeGeorgia Tech

In the world of 4 manifolds, finding exotic structures on 4 manifolds is considered one of most interesting and difficult problems. I will give a brief history of this and explain a very interesting tool "knot surgery" defined by Fintushel and Stern. In this talk I will mostly focused on drawing pictures. If time permits, I will talk various interesting applications.

A Szemeredi-type theorem for subsets of the unit cube.

Series
Analysis Seminar
Time
Wednesday, January 29, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Vjeko KovacGeorgia Tech

  We are interested in arithmetic progressions in positive measure subsets of [0,1]^d. After a counterexample by Bourgain, it seemed as if nothing could be said about the longest interval formed by sizes of their gaps. However, Cook, Magyar, and Pramanik gave a positive result for 3-term progressions if their gaps are measured in the l^p-norm for p other than 1, 2, and infinity, and the dimension d is large enough. We establish an appropriate generalization of their result to longer progressions. The main difficulty lies in handling a class of multilinear singular integrals associated with arithmetic progressions that includes the well-known multilinear Hilbert transforms, bounds for which still constitute an open problem. As a substitute, we use the previous work with Durcik and Thiele on power-type cancellation of those transforms, which was, in turn, motivated by a desire to quantify the results of Tao and Zorin-Kranich. This is joint work with Polona Durcik (Caltech).

Pollen patterns as a phase transition to modulated phases

Series
Mathematical Biology Seminar
Time
Wednesday, January 29, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Asja RadjaHarvard University

Pollen grain surface morphologies are famously diverse, and each species displays a unique, replicable pattern. The function of these microstructures, however, has not been elucidated. We show electron microscopy evidence that the templating of these patterns is formed by a phase separation of a polysaccharide mixture on the cell membrane surface. Here we present a Landau theory of phase transitions to ordered states describing all extant pollen morphologies. We show that 10% of all morphologies can be characterized as equilibrium states with a well-defined wavelength of the pattern. The rest of the patterns have a range of wavelengths on the surface that can be recapitulated by exploring the evolution of a conserved dynamics model. We then perform an evolutionary trait reconstruction. Surprisingly, we find that although the equilibrium states have evolved multiple times, evolution has not favored these ordered-polyhedral like shapes and perhaps their patterning is simply a natural consequence of a phase separation process without cross-linkers.  

From Lorenz to Lorenz: Principles and Possibilities in the Phase Space of Animal Behavior

Series
Other Talks
Time
Tuesday, January 28, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Howey N202
Speaker
Gregory StephensVrije Universiteit Amsterdam
Animal behavior is often quantified through subjective, incomplete variables that may mask essential dynamics. Here, we develop a behavioral state space in which the full instantaneous state is smoothly unfolded as a combination of short-time posture dynamics. Our technique is tailored to multivariate observations and extends previous reconstructions through the use of maximal prediction. Applied to high-resolution video recordings of the roundworm C. elegans, we discover a low-dimensional state space dominated by three sets of cyclic trajectories corresponding to the worm's basic stereotyped motifs: forward, backward, and turning locomotion. In contrast to this broad stereotypy, we find variability in the presence of locally-unstable dynamics, and this unpredictability shows signatures of deterministic chaos: a collection of unstable periodic orbits together with a positive maximal Lyapunov exponent. The full Lyapunov spectrum is symmetric with positive, chaotic exponents driving variability balanced by negative, dissipative exponents driving stereotypy. The symmetry is indicative of damped, driven Hamiltonian dynamics underlying the worm's movement control.

Arithmetic, Geometry, and the Hodge and Tate Conjectures for self-products of some K3 surfaces

Series
Job Candidate Talk
Time
Monday, January 27, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jaclyn LangUniversité Paris 13

Although studying numbers seems to have little to do with shapes, geometry has become an indispensable tool in number theory during the last 70 years. Deligne's proof of the Weil Conjectures, Wiles's proof of Fermat's Last Theorem, and Faltings's proof of the Mordell Conjecture all require machinery from Grothendieck's algebraic geometry. It is less frequent to find instances where tools from number theory have been used to deduce theorems in geometry. In this talk, we will introduce one tool from each of these subjects -- Galois representations in number theory and cohomology in geometry -- and explain how arithmetic can be used as a tool to prove some important conjectures in geometry. More precisely, we will discuss ongoing joint work with Laure Flapan in which we prove the Hodge and Tate Conjectures for self-products of 16 K3 surfaces using arithmetic techniques.

Pages