Seminars and Colloquia by Series

The energy conservation of inhomogeneous Euler equations

Series
PDE Seminar
Time
Tuesday, September 17, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cheng YuUniversity of Florida

In this talk, I will discuss from a mathematical viewpoint some sufficient conditions that guarantee the energy equality for weak solutions. I will mainly focus on a fluid equation example, namely the inhomogeneous Euler equations. The main tools are the commutator Lemmas.  This is a joint work with Ming Chen.

M-convexity and Lorentzian polynomials

Series
Lorentzian Polynomials Seminar
Time
Tuesday, September 17, 2019 - 14:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

I will discuss a proof of the statement that the support of a Lorentzian polynomial is M-convex, based on sections 3-5 of the Brändén—Huh paper.

Periodic Dynamics of a Local Perturbation in the Isotropic XY Model

Series
Math Physics Seminar
Time
Monday, September 16, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Livia CorsiUniversita' di Roma 3

I will consider the isotropic XY chain with a transverse magnetic field acting on a single site, and analyze the long time behaviour of the time-dependent state of the system when a periodic perturbation drives the impurity. I will show that, under some conditions, the state approaches a periodic orbit synchronized with the forcing. Moreover I will provide the explicit rate of convergence to the asymptotics. This is a joint work with G. Genovese.

Continuing the Fraction

Series
Undergraduate Seminar
Time
Monday, September 16, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Doron LubinskyGeorgia Tech

Continued fractions play a key role in number theory, especially in understanding how well we can approximate irrational numbers by rational numbers. They also play an important role in function theory, in understanding how well we can approximate analytic functions by rational functions. We discuss a few of the main achievements of the theory.

The “generating function” of configuration spaces, as a source for explicit formulas and representation stability

Series
Geometry Topology Seminar
Time
Monday, September 16, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nir GadishMassachusetts Institute of Technology

As countless examples show, sequences of complicated objects should be studied all at once via the formalism of generating functions. We apply this point of view to the homology and combinatorics of (orbit-)configuration spaces: using the notion of twisted commutative algebras, which categorify exponential generating functions. With this idea the configuration space “generating function” factors into an infinite product, whose terms are surprisingly easy to understand. Beyond the intrinsic aesthetic of this decomposition and its quantitative consequences, it also gives rise to representation stability - a notion of homological stability for sequences of representations of differing groups.

Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 16, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andre WibisonoGeorgia Tech
Sampling is a fundamental algorithmic task. Many modern applications require sampling from complicated probability distributions in high-dimensional spaces. While the setting of logconcave target distribution is well-studied, it is important to understand sampling beyond the logconcavity assumption. We study the Unadjusted Langevin Algorithm (ULA) for sampling from a probability distribution on R^n under isoperimetry conditions. We show a convergence guarantee in Kullback-Leibler (KL) divergence assuming the target distribution satisfies log-Sobolev inequality and the log density has bounded Hessian. Notably, we do not assume convexity or bounds on higher derivatives. We also show convergence guarantees in Rényi divergence assuming the limit of ULA satisfies either log-Sobolev or Poincaré inequality. Joint work with Santosh Vempala (arXiv:1903.08568).

Gram spectrahedra

Series
Student Algebraic Geometry Seminar
Time
Monday, September 16, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Jaewoo JungGeorgia Tech

The structure of sums-of-squares representations of (nonnegative homogeneous) polynomials is one interesting subject in real algebraic geometry. The sum-of-squares representations of a given polynomial are parametrized by the convex body of positive semidefinite Gram matrices, called the Gram spectrahedron. In this talk, I will introduce Gram spectrahedron, connection to toric variety, a new result that if a variety $X$ is arithmetically Cohen-Macaulay and a linearly normal variety of almost minimal degree (i.e. $\deg(X)=\text{codim}(X)+2$), then every sum of squares on $X$ is a sum of $\dim(X)+2$ squares.

Graph Algorithms and Offline Data Structures

Series
ACO Student Seminar
Time
Friday, September 13, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Richard PengCS, Georgia Tech

Graphs, which in their simplest forms are vertices connected by edges,
are widely used in high performance computing, machine learning and
network science. This talk will use recent progresses on two
well-studied algorithmic problems in static and dynamic graph,
max-flows and dynamic matchings, to discuss a methodology for
designing faster algorithm for large graphs. This approach is
motivated by a fundamental phenomenon in data structures: the
advantages of offline data structures over online ones.

I will start by describing how work on max-flows led to a focus on
finding short paths in residual graphs, and how investigating more
global notions of progress in residual graphs led to a more
sophisticated and general understanding of iterative methods and
preconditioning. I will then discuss a similar phenomenon in dynamic
graphs, where maintaining a large matching seems to require the online
detection of short augmenting paths, but can once again be
circumvented through the offline construction of smaller equivalent
graphs.

Quasirandom permutations

Series
Graph Theory Seminar
Time
Friday, September 13, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Dan KralMasaryk University and University of Warwick

A combinatorial structure is said to be quasirandom if it resembles a random structure in a certain robust sense. For example, it is well-known that a graph G with edge-density p is quasirandom if and only if the density of C_4 in G is p^4+o(p^4); this property is known to equivalent to several other properties that hold for truly random graphs.  A similar phenomenon was established for permutations: a permutation is quasirandom if and only if the density of every 4-point pattern (subpermutation) is 1/4!+o(1).  We strengthen this result by showing that a permutation is quasirandom if and only if the sum of the densities of eight specific 4-point patterns is 1/3+o(1). More generally, we classify all sets of 4-point patterns having such property.

The talk is based on joint work with Timothy F. N. Chan, Jonathan A. Noel, Yanitsa Pehova, Maryam Sharifzadeh and Jan Volec.

Pages