Seminars and Colloquia by Series

The Kac Model and (Non-)Equilibrium Statistical Mechanics

Series
SIAM Student Seminar
Time
Friday, October 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Prof. Federico Bonetto (Distinguished Speaker) GT Math

In 1959 Mark Kac introduced a simple model for the evolution 
of a gas of hard spheres undergoing elastic collisions. The main 
simplification consisted in replacing deterministic collisions with 
random Poisson distributed collisions.

It is possible to obtain many interesting results for this simplified 
dynamics, like estimates on the rate of convergence to equilibrium and 
validity of the Boltzmann equation. The price paid is that this system 
has no space structure.

I will review some classical results on the Kac model and report on an 
attempt to reintroduce some form of space structure and non-equilibrium 
evolution in a way that preserve the mathematical tractability of the 
system.
 

Expander decomposition: applications to dynamic and distributed algorithms

Series
ACO Student Seminar
Time
Friday, October 4, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thatchaphol SaranurakCS, Toyota Technological Institute at Chicago

Expander decomposition has been a central tool in designing graph algorithms in many fields (including fast centralized algorithms, approximation algorithms and property testing) for decades. Recently, we found that it also gives many impressive applications in dynamic graph algorithms and distributed graph algorithms. In this talk, I will survey these recent results based on expander decomposition, explain the key components for using this technique, and give some toy examples on how to apply these components.

Counting critical subgraphs in k-critical graphs

Series
Graph Theory Seminar
Time
Thursday, October 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUniversity of Science and Technology of China

A graph is $k$-critical if its chromatic number is $k$ but any its proper subgraph has chromatic number less than $k$. Let $k\geq 4$. Gallai asked in 1984 if any $k$-critical graph on $n$ vertices contains at least $n$ distinct $(k-1)$-critical subgraphs. Improving a result of Stiebitz, Abbott and Zhou proved in 1995 that every such graph contains $\Omega(n^{1/(k-1)})$ distinct $(k-1)$-critical subgraphs. Since then no progress had been made until very recently, Hare resolved the case $k=4$ by showing that any $4$-critical graph on $n$ vertices contains at least $(8n-29)/3$ odd cycles. We mainly focus on 4-critical graphs and develop some novel tools for counting cycles of specified parity. Our main result shows that any $4$-critical graph on $n$ vertices contains $\Omega(n^2)$ odd cycles, which is tight up to a constant factor by infinite many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite graphs, which may be of independent interest. Using the tools, we also give a very short proof to the Gallai's problem for the case $k=4$. Moreover, we improve the longstanding lower bound of Abbott and Zhou to $\Omega(n^{1/(k-2)})$ for the general case $k\geq 5$. Joint work with Tianchi Yang.

Total Curvature and the isoperimetric inequality: Proving the Cartan-Hadamard conjecture

Series
School of Mathematics Colloquium
Time
Thursday, October 3, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Mohammad GhomiGeorgia Institute of Technology

The classical isoperimetric inequality states that in Euclidean space spheres provide unique enclosures of least perimeter for any given volume. In this talk we discuss how this inequality may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, as conjectured by Aubin, Gromov, Burago, and Zalgaller in 1970s and 80s. The proposed proof is based on a comparison formula for total curvature of level sets in Riemannian manifolds, and estimates for the smooth approximation of the signed distance function, via inf-convolution and Reilly type formulas among other techniques. Immediate applications include sharp extensions of Sobolev and Faber-Krahn inequalities to spaces of nonpositive curvature. This is joint work with Joel Spruck.

Invertibility of inhomogenuous random matrices

Series
High Dimensional Seminar
Time
Wednesday, October 2, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Galyna LivshytsGeorgia Tech

We will show the sharp estimate on the behavior of the smallest singular value of random matrices under very general assumptions. One of the steps in the proof is a result about the efficient discretization of the unit sphere in an n-dimensional euclidean space. Another step involves the study of the regularity of the behavior of lattice sets. Some elements of the proof will be discussed. Based on the joint work with Tikhomirov and Vershynin.

H-cobordisms and corks

Series
Geometry Topology Student Seminar
Time
Wednesday, October 2, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

Stephen Smale’s h-cobordism Theorem was a landmark result in the classification of smooth manifolds. It paved the way towards solutions for the topological Poincaré and Schoenflies conjectures in dimensions greater than 5. Later, building on this, Freedman’s work applied these techniques to 4 manifolds. I shall discuss the ideas relating to h-cobordisms and the proof, which is a wonderful application of handlebody theory and the Whitney trick. Time permitting, we shall explore the world of smooth 4 manifolds further, and talk about cork twists.

The isoperimetric inequality

Series
Research Horizons Seminar
Time
Wednesday, October 2, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammad GhomiGeorgia Tech

The classical isoperimetric inequality states that in Euclidean space spheres form the least perimeter enclosures for any give volume. We will review the historic development of this result in mathematics, and various approaches to proving it. Then we will discuss how one of these approaches, which is a variational argument, may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, in order to generalize the isoperimetric inequality.

Clustering strings with mutations using an expectation-maximization algorithm

Series
Mathematical Biology Seminar
Time
Wednesday, October 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Afaf Saaidi Georgia Tech

An expectation-maximization (EM) algorithm is a powerful clustering method that was initially developed to fit Gaussian mixture distributions. In the absence of a particular probability density function, an EM algorithm aims to estimate the "best" function that maximizes the likelihood of data being generated by the model. We present an EM algorithm which addresses the problem of clustering "mutated" substrings of similar parent strings such that each substring is correctly assigned to its parent string. This problem is motivated by the process of simultaneously reading similar RNA sequences during which various substrings of the sequence are produced and could be mutated; that is, a substring may have some letters changed during the reading process. Because the original RNA sequences are similar, a substring is likely to be assigned to the wrong original sequence. We describe our EM algorithm and present a test on a simulated benchmark which shows that our method yields a better assignment of the substrings than what has been achieved by previous methods. We conclude by discussing how this assignment problem applies to RNA structure prediction.

Heights and moments of abelian varieties

Series
Algebra Seminar
Time
Wednesday, October 2, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Farbod ShokriehUnviersity of Washington

We give a formula relating various notions of heights of abelian varieties. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener, and it extends the Faltings-Silverman formula for elliptic curves. We also discuss the case of Jacobians in some detail, where graphs and electrical networks will play a key role.   Based on joint works with Robin de Jong (Leiden).

Pages