Seminars and Colloquia by Series

Joint UGA-GT Topology Seminar at GT: Smooth 4-Manifolds and Higher Order Corks

Series
Geometry Topology Seminar
Time
Monday, October 7, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Paul MelvinBryn Mawr College

It is a remarkable fact that some compact topological 4-manifolds X admit infinitely many exotic smooth structures, a phenomenon unique to dimension four.  Indeed a fundamental open problem in the subject is to give a meaningful description of the set of all such structures on any given X.  This talk will describe one approach to this problem when X is simply-connected, via cork twisting.  First we'll sketch an argument to show that any finite list of smooth manifolds homeomorphic to X can be obtained by removing a single compact contractible submanifold (or cork) from X, and then regluing it by powers of a boundary diffeomorphism.  In fact, allowing the cork to be noncompact, the collection of all smooth manifolds homeomorphic to X can be obtained in this way.  If time permits, we will also indicate how to construct a single universal noncompact cork whose twists yield all smooth closed simply-connected 4-manifolds.  This is joint work with Hannah Schwartz.

Multiscale Modeling and Computation of Optically Manipulated Nano Devices

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 7, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Professor Di LiuMichigan State University

We present a multiscale modeling and computational scheme for optical-
mechanical responses of nanostructures. The multi-physical nature of
the problem is a result of the interaction between the electromagnetic
(EM) field, the molecular motion, and the electronic excitation. To
balance accuracy and complexity, we adopt the semi-classical approach
that the EM field is described classically by the Maxwell equations,
and the charged particles follow the Schr ̈oidnger equations quantum
mechanically. To overcome the numerical challenge of solving the high
dimensional multi-component many- body Schr ̈odinger equations, we
further simplify the model with the Ehrenfest molecular dynamics to
determine the motion of the nuclei, and use the Time- Dependent
Current Density Functional Theory (TD-CDFT) to calculate the
excitation of the electrons. This leads to a system of coupled
equations that computes the electromagnetic field, the nuclear
positions, and the electronic current and charge densities
simultaneously. In the regime of linear responses, the resonant
frequencies initiating the out-of-equilibrium optical-mechanical
responses can be formulated as an eigenvalue problem. A
self-consistent multiscale method is designed to deal with the well
separated space scales. The isomerization of Azobenzene is presented as a numerical example.

The foundation of a matroid

Series
Student Algebraic Geometry Seminar
Time
Monday, October 7, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles
Speaker
Tianyi ZhangGA Tech

Foundation is a powerful tool to understand the representability of matroids. The foundation of a matroid is a pasture which is an algebraic structure genrealize the field. I will briefly introduce matroids, algebraic structures (especially pastures) and matroid representability. I will also give some examples on how foundation works in representation of matroids.

The Kac Model and (Non-)Equilibrium Statistical Mechanics

Series
SIAM Student Seminar
Time
Friday, October 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Prof. Federico Bonetto (Distinguished Speaker) GT Math

In 1959 Mark Kac introduced a simple model for the evolution 
of a gas of hard spheres undergoing elastic collisions. The main 
simplification consisted in replacing deterministic collisions with 
random Poisson distributed collisions.

It is possible to obtain many interesting results for this simplified 
dynamics, like estimates on the rate of convergence to equilibrium and 
validity of the Boltzmann equation. The price paid is that this system 
has no space structure.

I will review some classical results on the Kac model and report on an 
attempt to reintroduce some form of space structure and non-equilibrium 
evolution in a way that preserve the mathematical tractability of the 
system.
 

Expander decomposition: applications to dynamic and distributed algorithms

Series
ACO Student Seminar
Time
Friday, October 4, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thatchaphol SaranurakCS, Toyota Technological Institute at Chicago

Expander decomposition has been a central tool in designing graph algorithms in many fields (including fast centralized algorithms, approximation algorithms and property testing) for decades. Recently, we found that it also gives many impressive applications in dynamic graph algorithms and distributed graph algorithms. In this talk, I will survey these recent results based on expander decomposition, explain the key components for using this technique, and give some toy examples on how to apply these components.

Counting critical subgraphs in k-critical graphs

Series
Graph Theory Seminar
Time
Thursday, October 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUniversity of Science and Technology of China

A graph is $k$-critical if its chromatic number is $k$ but any its proper subgraph has chromatic number less than $k$. Let $k\geq 4$. Gallai asked in 1984 if any $k$-critical graph on $n$ vertices contains at least $n$ distinct $(k-1)$-critical subgraphs. Improving a result of Stiebitz, Abbott and Zhou proved in 1995 that every such graph contains $\Omega(n^{1/(k-1)})$ distinct $(k-1)$-critical subgraphs. Since then no progress had been made until very recently, Hare resolved the case $k=4$ by showing that any $4$-critical graph on $n$ vertices contains at least $(8n-29)/3$ odd cycles. We mainly focus on 4-critical graphs and develop some novel tools for counting cycles of specified parity. Our main result shows that any $4$-critical graph on $n$ vertices contains $\Omega(n^2)$ odd cycles, which is tight up to a constant factor by infinite many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite graphs, which may be of independent interest. Using the tools, we also give a very short proof to the Gallai's problem for the case $k=4$. Moreover, we improve the longstanding lower bound of Abbott and Zhou to $\Omega(n^{1/(k-2)})$ for the general case $k\geq 5$. Joint work with Tianchi Yang.

Total Curvature and the isoperimetric inequality: Proving the Cartan-Hadamard conjecture

Series
School of Mathematics Colloquium
Time
Thursday, October 3, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Mohammad GhomiGeorgia Institute of Technology

The classical isoperimetric inequality states that in Euclidean space spheres provide unique enclosures of least perimeter for any given volume. In this talk we discuss how this inequality may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, as conjectured by Aubin, Gromov, Burago, and Zalgaller in 1970s and 80s. The proposed proof is based on a comparison formula for total curvature of level sets in Riemannian manifolds, and estimates for the smooth approximation of the signed distance function, via inf-convolution and Reilly type formulas among other techniques. Immediate applications include sharp extensions of Sobolev and Faber-Krahn inequalities to spaces of nonpositive curvature. This is joint work with Joel Spruck.

Invertibility of inhomogenuous random matrices

Series
High Dimensional Seminar
Time
Wednesday, October 2, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Galyna LivshytsGeorgia Tech

We will show the sharp estimate on the behavior of the smallest singular value of random matrices under very general assumptions. One of the steps in the proof is a result about the efficient discretization of the unit sphere in an n-dimensional euclidean space. Another step involves the study of the regularity of the behavior of lattice sets. Some elements of the proof will be discussed. Based on the joint work with Tikhomirov and Vershynin.

H-cobordisms and corks

Series
Geometry Topology Student Seminar
Time
Wednesday, October 2, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

Stephen Smale’s h-cobordism Theorem was a landmark result in the classification of smooth manifolds. It paved the way towards solutions for the topological Poincaré and Schoenflies conjectures in dimensions greater than 5. Later, building on this, Freedman’s work applied these techniques to 4 manifolds. I shall discuss the ideas relating to h-cobordisms and the proof, which is a wonderful application of handlebody theory and the Whitney trick. Time permitting, we shall explore the world of smooth 4 manifolds further, and talk about cork twists.

Pages