Seminars and Colloquia by Series

The essential variety and degrees of minimal problems

Series
Student Algebraic Geometry Seminar
Time
Monday, September 30, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles
Speaker
Tim DuffGA Tech

It is a fundamental problem in computer vision to describe the geometric relations between two or more cameras that view the same scene -- state of the art methods for 3D reconstruction incorporate these geometric relations in a nontrivial way. At the center of the action is the essential variety: an irreducible subvariety of P^8 of dimension 5 and degree 10 whose homogeneous ideal is minimal generated by 10 cubic equations. Taking a linear slice of complementary dimension corresponds to solving the "minimal problem" of 5 point relative pose estimation. Viewed algebraically, this problem has 20 solutions for generic data: these solutions are elements of the special Euclidean group SE(3) which double cover a generic slice of the essential variety. The structure of these 20 solutions is governed by a somewhat mysterious Galois group (ongoing work with Regan et. al.)

We may ask: what other minimal problems are out there? I'll give an overview of work with Kohn, Pajdla, and Leykin on this question. We have computed the degrees of many minimal problems via computer algebra and numerical methods. I am inviting algebraic geometers at large to attack these problems with "pen and paper" methods: there is still a wide class of problems to be considered, and the more tools we have, the better.

Geometry Topology Seminar Pre-talk: Fundamental groups of projective varieties by Corey Bregman

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 30, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Corey BregmanBrandeis University

A question going back to Serre asks which groups arise as fundamental groups of smooth, complex projective varieties, or more generally, compact Kaehler manifolds.  The most basic examples of these are surface groups, arising as fundamental groups of 1-dimensional projective varieties.  We will survey known examples and restrictions on such groups and explain the special role surface groups play in their classification. Finally, we connect this circle of ideas to more general questions about surface bundles and mapping class groups. 

Finite element approximation of invariant manifolds by the parameterization method

Series
CDSNS Colloquium
Time
Monday, September 30, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jorge GonzalezFlorida Atlantic University

We consider the problem of computing unstable manifolds for equilibrium solutions of parabolic PDEs posed on irregular spatial domains. This new approach is based on the parameterization method, a general functional analytic framework for studying invariant manifolds of dynamical systems. The method leads to an infinitesimal invariance equation describing the unstable manifold. A recursive scheme leads to linear homological equations for the jets of the manifold which are solved using the finite element method. One feature of the method is that we recover the dynamics on the manifold in addition to its embedding.  We implement the method for some example problems with polynomial and non-polynomial nonlinearities posed on various non-convex two dimensional domains. We provide numerical support for the accuracy of the computed manifolds using the natural notion of a-posteriori error admitted by the parameterization method. This is joint work with J.D. Mireles-James and Necibe Tuncer. 

Beyond Submodular Maximization

Series
ACO Student Seminar
Time
Friday, September 27, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mehrdad GhadiriCS, Georgia Tech

In the past decade, the catalog of algorithms available to combinatorial optimizers has been substantially extended to settings which allow submodular objective functions. One significant recent result was a tight (1-1/e)-approximation for maximizing a non-negative monotone submodular function subject to a matroid constraint. These algorithmic developments were happening concurrently with research that found a wealth of new applications for submodular optimization in machine learning, recommender systems, and algorithmic game theory.

 

The related supermodular maximization models also offer an abundance of applications, but they appeared to be highly intractable even under simple cardinality constraints and even when the function has a nice structure. For example, the densest subgraph problem - suspected to be highly intractable - can be expressed as a monotonic supermodular function which has a particularly nice form. Namely, the objective can be expressed by a quadratic form $x^T A x$ where $A$ is a non-negative, symmetric, 0-diagonal matrix. On the other hand, when the entries $A(u,v)$ form a metric, it has been shown that the associated maximization problems have constant factor approximations. Inspired by this, we introduce a parameterized class of non-negative functions called meta-submodular functions that can be approximately maximized within a constant factor. This class includes metric diversity, monotone submodular and other objectives appearing in the machine learning and optimization literature. A general meta-submodular function is neither submodular nor supermodular and so its multi-linear extension does not have the nice convexity/concavity properties which hold for submodular functions. They do, however, have an intrinsic one-sided smoothness property which is essential for our algorithms. This smoothness property might be of independent interest.

A proof of the Sensitivity Conjecture

Series
ACO Colloquium
Time
Thursday, September 26, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao HuangEmory University
In the n-dimensional hypercube graph, one can easily choose half of the vertices such that they induce an empty graph. However, having even just one more vertex would cause the induced subgraph to contain a vertex of degree at least \sqrt{n}. This result is best possible, and improves a logarithmic lower bound shown by Chung, Furedi, Graham and Seymour in 1988. In this talk we will discuss a very short algebraic proof of it.
 

As a direct corollary of this purely combinatorial result, the sensitivity and degree of every boolean function are polynomially related. This solves an outstanding foundational problem in theoretical computer science, the Sensitivity Conjecture of Nisan and Szegedy.

Size of nodal domains for Erdős–Rényi Graph

Series
High Dimensional Seminar
Time
Wednesday, September 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Han HuangGeorgia Tech

In the realm of Laplacians of Riemannian manifolds, nodal domains have been the subject of intensive research for well over a hundred years. 

Given a Riemannian manifold M, let f be an eigenfunctions f of the Laplacian with respect to some boundary conditions.  A nodal domain associated with f is the maximal connected subset of the domain M  for which the f does not change sign.

Here we examine the discrete cases, namely we consider nodal domains for graphs. Dekel-Lee-Linial shows that for a Erdős–Rényi graph G(n, p), with high probability there are exactly two nodal domains for each eigenvector corresponding to a non-leading eigenvalue.  We prove that with high probability, the sizes of these nodal domains are approximately equal to each other. 

 

Graph Theory and Heegaard Floer Homology

Series
Geometry Topology Student Seminar
Time
Wednesday, September 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyun Ki MinGeorgia Tech

I will talk about a connection between graph theory and sutured Floer homology. In fact, there is a one to one correspondence between hypergraphs of a planar bipartite graph and the dimension of sutured Floer homology of a complement of a neighborhood of special alternating link In a three sphere. This is based on the work of Juhas, Kalman and Rasmussen.

Variants of the Christ-Kiselev lemma and an application to the maximal Fourier restriction

Series
Analysis Seminar
Time
Wednesday, September 25, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Vjekoslav KovacUniversity of Zagreb

Back in the year 2000, Christ and Kiselev introduced a useful "maximal trick" in their study of spectral properties of Schro edinger operators.
The trick was completely abstract and only at the level of basic functional analysis and measure theory. Over the years it was reproven,
generalized, and reused by many authors. We will present its recent application in the theory of restriction of the Fourier transform to
surfaces in the Euclidean space.

Insertions on Double Occurrence Words

Series
Mathematical Biology Seminar
Time
Wednesday, September 25, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel CruzGeorgia Tech

A double occurrence word (DOW) is a word in which every symbol appears exactly twice; two DOWs are equivalent if one is a symbol-to-symbol image of the other. In the context of genomics, DOWs and operations on DOWs have been used in studies of DNA rearrangement. By modeling the DNA rearrangement process using DOWs, it was observed that over 95% of the scrambled genome of the ciliate Oxytricha trifallax could be described by iterative insertions of the ``repeat pattern'' and the ``return pattern''. These patterns generalize square and palindromic factors of DOWs, respectively. We introduce a notion of inserting repeat/return words into DOWs and study how two distinct insertions into the same word can produce equivalent DOWs. Given a DOW w, we characterize the structure of  w which allows two distinct insertions to yield equivalent DOWs. This characterization depends on the locations of the insertions and on the length of the inserted repeat/return words and implies that when one inserted word is a repeat word and the other is a return word, then both words must be trivial (i.e., have only one symbol). The characterization also introduces a method to generate families of words recursively.

On the relativistic Landau equation

Series
PDE Seminar
Time
Tuesday, September 24, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Maja TaskovicEmory University
In kinetic theory, a large system of particles is described by the particle density function. The Landau equation, derived by Landau in 1936, is one such example. It models a dilute hot plasma with fast moving particles that interact via Coulomb interactions. This model does not include the effects of Einstein’s theory of special relativity. However, when particle velocities are close to the speed of light, which happens frequently in a hot plasma, then relativistic effects become important. These effects are captured by the relativistic Landau equation, which was derived by Budker and Beliaev in 1956. 
 
We study the Cauchy problem for the spatially homogeneous relativistic Landau equation with Coulomb interactions. The difficulty of the problem lies in the extreme complexity of the kernel in the relativistic collision operator. We present a new decomposition of such kernel. This is then used to prove the global Entropy dissipation estimate, the propagation of any polynomial moment for a weak solution, and the existence of a true weak solution for a large class of initial data. This is joint work with Robert M. Strain.

Pages