Seminars and Colloquia by Series

A family of freely slice good boundary links

Series
Geometry Topology Seminar
Time
Monday, November 5, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Min Hoon KimKorea Institute for Advanced Study
The still open topological 4-dimensional surgery conjecture is equivalent to the statement that all good boundary links are freely slice. In this talk, I will show that every good boundary link with a pair of derivative links on a Seifert surface satisfying a homotopically trivial plus assumption is freely slice. This subsumes all previously known methods for freely slicing good boundary links with two or more components, and provides new freely slice links. This is joint work with Jae Choon Cha and Mark Powell.

High-dimensional Covariance Structure Testing using Maximum Pairwise Bayes Factors

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 5, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lizhen LinUniversity of Notre Dame
Hypothesis testing of structure in covariance matrices is of significant importance, but faces great challenges in high-dimensional settings. Although consistent frequentist one-sample covariance tests have been proposed, there is a lack of simple, computationally scalable, and theoretically sound Bayesian testing methods for large covariance matrices. Motivated by this gap and by the need for tests that are powerful against sparse alternatives, we propose a novel testing framework based on the maximum pairwise Bayes factor. Our initial focus is on one-sample covariance testing; the proposed test can optimally distinguish null and alternative hypotheses in a frequentist asymptotic sense. We then propose diagonal tests and a scalable covariance graph selection procedure that are shown to be consistent. Further, our procedure can effectively control false positives. A simulation study evaluates the proposed approach relative to competitors. The performance of our graph selection method is demonstrated through applications to a sonar data set.

Introduction to Freedman's disk embedding conjecture

Series
Geometry Topology Seminar Pre-talk
Time
Monday, November 5, 2018 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Min Hoon KimKorea Institute for Advanced Study
In 1982, by using his celebrated disk embedding theorem, Freedman classified simply connected topological 4-manifolds up to homeomorphism. The disk embedding conjecture says that the disk embedding theorem holds for general 4-manifolds with arbitrary fundamental groups. The conjecture is a central open question in 4-manifold topology. In this introductory survey talk, I will briefly discuss Freedman's disk embedding conjecture and some related conjectures (the topological 4-dimensional surgery conjecture and the s-cobordism conjecture). I will also explain why the disk embedding conjecture implies that all good boundary links are freely slice.

A Simple Analytic Proof for the Shadowing Lemma

Series
Dynamical Systems Working Seminar
Time
Friday, November 2, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 156
Speaker
Yian YaoGT Math
The Shadowing lemma describes the behaviour of pseudo-orbits near a hyperbolic invariant set. In this talk, I will present an analytic proof of the shadowing lemma for discrete flows. This is a work by K. R. Meyer and George R. Sell.

A splitter theorem for large 3-connected graphs

Series
Combinatorics Seminar
Time
Friday, November 2, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guoli Ding Louisiana State University
The purpose of this talk is to explain the following result. Let n > 2 be an integer. Let H be a 3-connected minor of a 3-connected graph G. If G is sufficiently large (relative to n and the size of H) then G has a 3-connected minor obtained from H by “adding” K_{3,n} or W_n.

Accelerating the Convergence Rate of Distributed Subgradient Methods with Adaptive Quantization

Series
ACO Student Seminar
Time
Friday, November 2, 2018 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thinh DoanISyE/ECE, Georgia Tech
Abstract In this talk, I will present a popular distributed method, namely, distributed consensus-based gradient (DCG) method, for solving optimal learning problems over a network of agents. Such problems arise in many applications such as, finding optimal parameters over a large dataset distributed among a network of processors or seeking an optimal policy for coverage control problems in robotic networks. The focus is to present our recent results, where we study the performance of DCG when the agents are only allowed to exchange their quantized values due to their finite communication bandwidth. In particular, we develop a novel quantization method, which we refer to as adaptive quantization. The main idea of our approach is to quantize the nodes' estimates based on the progress of the algorithm, which helps to eliminate the quantized errors. Under the adaptive quantization, we then derive the bounds on the convergence rates of the proposed method as a function of the bandwidths and the underlying network topology, for both convex and strongly convex objective functions. Our results suggest that under the adaptive quantization, the rate of convergence of DCG with and without quantization are the same, except for a factor which captures the number of quantization bits. To the best of the authors’ knowledge, the results in this paper are considered better than any existing results for DCG under quantization. This is based on a joint work with Siva Theja Maguluri and Justin Romberg. Bio Thinh T. Doan is a TRIAD postdoctoral fellow at Georgia Institute of Technology, joint between the School of Industrial and Systems Engineering and the School of Electrical and Computer Engineering (ECE). He was born in Vietnam, where he got his Bachelor degree in Automatic Control at Hanoi University of Science and Technology in 2008. He obtained his Master and Ph.D. degrees both in ECE from the University of Oklahoma in 2013 and the University of Illinois at Urbana-Champaign in 2018, respectively. His research interests lie at the intersection of control theory, optimization, distributed algorithms, and applied probability, with the main applications in machine learning, reinforcement learning, power networks, and multi-agent systems.

The upper tail for triangles in sparse random graphs

Series
Graph Theory Seminar
Time
Thursday, November 1, 2018 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wojtek SamotijTel Aviv University
Let X denote the number of triangles in the random graph G(n, p). The problem of determining the asymptotics of the rate of the upper tail of X, that is, the function f_c(n,p) = log Pr(X > (1+c)E[X]), has attracted considerable attention of both the combinatorics and the probability communities. We shall present a proof of the fact that whenever log(n)/n << p << 1, then f_c(n,p) = (r(c)+o(1)) n^2 p^2 log(p) for an explicit function r(c). This is joint work with Matan Harel and Frank Mousset.

(2P2, K4)-Free Graphs are 4-Colorable

Series
Graph Theory Working Seminar
Time
Wednesday, October 31, 2018 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shijie XieGeorgia Tech
A graph G is H-free if H is not isomorphic to an induced subgraph of G. Let Pt denote the path on t vertices, and let Kn denote the complete graph on n vertices. For a positive integer r, we use rG to denote the disjoint union of r copies of G. In this talk, we will discuss the result, by Gaspers and Huang, that (2P2, K4)-free graphs are 4-colorable, where the bound is attained by the five-wheel and the complement of seven-cycle. It answers an open question by Wagon in 1980s.

Integral geometric regularity

Series
Analysis Seminar
Time
Wednesday, October 31, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joe FuUGA
The centerpiece of the subject of integral geometry, as conceived originally by Blaschke in the 1930s, is the principal kinematic formula (PKF). In rough terms, this expresses the average Euler characteristic of two objects A, B in general position in Euclidean space in terms of their individual curvature integrals. One of the interesting features of the PKF is that it makes sense even if A and B are not smooth enough to admit curvatures in the classical sense. I will describe the state of our understanding of the regularity needed to make it all work, and state some conjectures that would extend it.

Smooth valuations and their products

Series
High Dimensional Seminar
Time
Wednesday, October 31, 2018 - 12:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joe FuUGA

Alesker has introduced the notion of a smooth valuation on a smooth manifold M. This is a special kind of set function, defined on sufficiently regular compact subsets A of M, extending the corresponding idea from classical convexity theory. Formally, a smooth valuation is a kind of curvature integral; informally, it is a sum of Euler characteristics of intersections of A with a collection of objects B. Smooth valuations admit a natural multiplication, again due to Alesker. I will aim to explain the rather abstruse formal definition of this multiplication, and its relation to the ridiculously simple informal counterpart given by intersections of the objects B.

Pages