Seminars and Colloquia by Series

High Dimensional Inference: Semiparametrics, Counterfactuals, and Heterogeneity

Series
Job Candidate Talk
Time
Tuesday, January 16, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ying ZhuMichigan State University
Semiparametric regressions enjoy the flexibility of nonparametric models as well as the in-terpretability of linear models. These advantages can be further leveraged with recent ad-vance in high dimensional statistics. This talk begins with a simple partially linear model,Yi = Xi β ∗ + g ∗ (Zi ) + εi , where the parameter vector of interest, β ∗ , is high dimensional butsufficiently sparse, and g ∗ is an unknown nuisance function. In spite of its simple form, this highdimensional partially linear model plays a crucial role in counterfactual studies of heterogeneoustreatment effects. In the first half of this talk, I present an inference procedure for any sub-vector (regardless of its dimension) of the high dimensional β ∗ . This method does not requirethe “beta-min” condition and also works when the vector of covariates, Zi , is high dimensional,provided that the function classes E(Xij |Zi )s and E(Yi |Zi ) belong to exhibit certain sparsityfeatures, e.g., a sparse additive decomposition structure. In the second half of this talk, I discussthe connections between semiparametric modeling and Rubin’s Causal Framework, as well asthe applications of various methods (including the one from the first half of this talk and thosefrom my other papers) in counterfactual studies that are enriched by “big data”.Abstract as a .pdf

Integrable probability

Series
School of Mathematics Colloquium
Time
Tuesday, January 16, 2018 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ivan CorwinColumbia University
The probability of outcomes of repeated fair coin tosses can be computed exactly using binomial coefficients. Performing asymptotics on these formulas uncovers the Gaussian distribution and the first instance of the central limit theorem. This talk will focus on higher version of this story. We will consider random motion subject to random forcing. By leveraging structures from representation theory and quantum integrable systems we can compute the analogs of binomial coefficients and extract new and different asymptotic behaviors than those of the Gaussian. This model and its analysis fall into the general theory of "integrable probability".

What is Hamiltonian mechanics? Why use it? How to use it.

Series
Other Talks
Time
Friday, January 12, 2018 - 10:10 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Rafael de la LlaveSchool of Mathematics, Georgia Inst. of Technology
This is a preliminary talk for the Workshop "Introduction to Dynamical Systems Methods for Mission Design" that will take place Jan 16-19 in the school of Mathematics. In this talk, we will present the basics of Hamiltonian dynamics and why it is useful. It ishoped that it will be accesible for people with background in undergraduate differential equations who want to participate in the workshop.

Minors of graphs of large path-width

Series
Dissertation Defense
Time
Tuesday, January 9, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thanh Dang Math, GT
Let P be a graph with a vertex v such that P-v is a forest and let Q be an outerplanar graph. In 1993 Paul Seymour asked if every two-connected graph of sufficiently large path-width contains P or Q as a minor.mDefine g(H) as the minimum number for which there exists a positive integer p(H) such that every g(H)-connected H-minor-free graph has path-width at most p(H). Then g(H) = 0 if and only if H is a forest and there is no graph H with g(H) = 1, because path-width of a graph G is the maximum of the path-widths of its connected components.Let A be the graph that consists of a cycle (a_1,a_2,a_3,a_4,a_5,a_6,a_1) and extra edges a_1a_3, a_3a_5, a_5a_1. Let C_{3,2} be a graph of 2 disjoint triangles. In 2014 Marshall and Wood conjectured that a graph H does not have K_{4}, K_{2,3}, C_{3,2} or A as a minor if and only if g(H) >= 2. In this thesis we answer Paul Seymour's question in the affirmative and prove Marshall and Wood's conjecture, as well as extend the result to three-connected and four-connected graphs of large path-width. We introduce ``cascades", our main tool, and prove that in any tree-decomposition with no duplicate bags of bounded width of a graph of big path-width there is an ``injective" cascade of large height. Then we prove that every 2-connected graph of big path-width and bounded tree-width admits a tree-decomposition of bounded width and a cascade with linkages that are minimal. We analyze those minimal linkages and prove that there are essentially only two types of linkage. Then we convert the two types of linkage into the two families of graphs P and Q. In this process we have to choose the ``right'' tree decomposition to deal with special cases like a long cycle. Similar techniques are used for three-connected and four-connected graphs with high path-width.

A class of global expanding solutions to three dimensional compressible flows

Series
PDE Seminar
Time
Wednesday, December 13, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mahir HadžićKing's College London
In a recent work Sideris constructed a finite-parameter family of compactly supported affine solutions to the free boundary compressible Euler equations satisfying the physical vacuum condition. The support of these solutions expands at a linear rate in time. We show that if the adiabatic exponent gamma belongs to the interval(1, 5/3] then these affine motions are globally-in-time nonlinearly stable. If time permits we shall also discuss several classes of global solutions to the compressible Euler-Poisson system. This is a joint work with Juhi Jang.

Symbolic computations of homoclinic chaos

Series
CDSNS Colloquium
Time
Monday, December 11, 2017 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrey ShilnikovGeorgia State University
Over recent years, a great deal of analytical studies and modeling simulations have been brought together to identify the key signatures that allow dynamically similar nonlinear systems from diverse origins to be united into a single class. Among these key structures are bifurcations of homoclinic and heteroclinic connections of saddle equilibria and periodic orbits. Such homoclinic structures are the primary cause for high sensitivity and instability of deterministic chaos in various systems. Development of effective, intelligent and yet simple algorithms and tools is an imperative task for studies of complex dynamics in generic nonlinear systems. The core of our approach is the reduction of the time evolution of a characteristic observable in a system to its symbolic representation to conjugate or differentiate between similar behaviors. Of our particular consideration are the Lorenz-like systems and systems with spiral chaos due to the Shilnikov saddle-focus. The proposed approach and tools will let one detect homoclinic and heteroclinic orbits, and carry out state of the art studies homoclinic bifurcations in parameterized systems of diverse origins.

Planar graphs and Legendrian surfaces

Series
School of Mathematics Colloquium
Time
Friday, December 8, 2017 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Emmy MurphyNorthwestern University
Associated to a planar cubic graph, there is a closed surface in R^5, as defined by Treumann and Zaslow. R^5 has a canonical geometry, called a contact structure, which is compatible with the surface. The data of how this surface interacts with the geometry recovers interesting data about the graph, notably its chromatic polynomial. This also connects with pseudo-holomorphic curve counts which have boundary on the surface, and by looking at the resulting differential graded algebra coming from symplectic field theory, we obtain new definitions of n-colorings which are strongly non-linear as compared to other known definitions. There are also relationships with SL_2 gauge theory, mathematical physics, symplectic flexibility, and holomorphic contact geometry. During the talk we'll explain the basic ideas behind the various fields above, and why these various concepts connect.

Pages