Seminars and Colloquia by Series

Fuglede's spectral-set conjecture.

Series
Analysis Seminar
Time
Wednesday, December 5, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rachel GreenfeldBar Ilan University
A set $\Omega\subset \mathbb{R}^d$ is called spectral if the space $L^2(\Omega)$ admits an orthogonal basis of exponential functions. Back in 1974 B. Fuglede conjectured that spectral sets could be characterized geometrically by their ability to tile the space by translations. Although since then the subject has been extensively studied, the precise connection between spectrality and tiling is still a mystery.>In the talk I will survey the subject and discuss some recent results, joint with Nir Lev, where we focus on the conjecture for convex polytopes.

Classical mechanisms of recollision and high harmonic generation

Series
Other Talks
Time
Monday, December 3, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Howey N110
Speaker
Simon Berman Georgia Tech (Physics)
Thesis defense: Advisors: Turgay Uzer and Cristel Chandre Summary: Thirty years after the demonstration of the production of high laser harmonics through nonlinear laser-gas interaction, high harmonic generation (HHG) is being used to probe molecular dynamics in real time and is realizing its technological potential as a tabletop source of attosecond pulses in the XUV to soft X-ray range. Despite experimental progress, theoretical efforts have been stymied by the excessive computational cost of first-principles simulations and the difficulty of systematically deriving reduced models for the non-perturbative, multiscale interaction of an intense laser pulse with a macroscopic gas of atoms. In this thesis, we investigate first-principles reduced models for HHG using classical mechanics. On the microscopic level, we examine the recollision process---the laser-driven collision of an ionized electron with its parent ion---that drives HHG. Using nonlinear dynamics, we elucidate the indispensable role played by the ionic potential during recollisions in the strong-field limit. On the macroscopic level, we show that the intense laser-gas interaction can be cast as a classical field theory. Borrowing a technique from plasma physics, we systematically derive a hierarchy of reduced Hamiltonian models for the self-consistent interaction between the laser and the atoms during pulse propagation. The reduced models can accommodate either classical or quantum electron dynamics, and in both cases, simulations over experimentally-relevant propagation distances are feasible. We build a classical model based on these simulations which agrees quantitatively with the quantum model for the propagation of the dominant components of the laser field. Subsequently, we use the classical model to trace the coherent buildup of harmonic radiation to its origin in phase space. In a simplified geometry, we show that the anomalously high frequency radiation seen in simulations results from the delicate interplay between electron trapping and higher energy recollisions brought on by propagation effects.

Linear dependence among powers of polynomials

Series
Algebra Seminar
Time
Monday, December 3, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bruce ReznickUniversity of Illinois, Urbana Champaign
One variation of the Waring problem is to ask for the shortest non-trivial equations of the form f_1^d + ... + f_r^d = 0, under various conditions on r, d and where f_j is a binary form. In this talk I'll limit myself to quadratic forms, and show all solutions for r=4 and d=3,4,5. I'll also give tools for you to find such equations on your own. The talk will touch on topics from algebra, analysis, number theory, combinatorics and algebraic geometry and name-check such notables as Euler, Sylvester and Ramanujan, but be basically self-contained. To whet your appetite: (x^2 + xy - y^2)^3 + (x^2 - xy - y^2)^3 = 2x^6 - 2y^6.

Maximal Weinstein domains

Series
Geometry Topology Seminar
Time
Monday, December 3, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Oleg LazarevColumbia
Weinstein cobordisms give a natural relationship on the set of Weinstein domains. Flexible Weinstein domains are minimal with respect to this relationship. In this talk, I will use these minimal domains to construct maximal Weinstein domains: any two high-dimensional Weinstein domains with the same topology are Weinstein subdomains of a maximal Weinstein domain also with the same topology. Using this construction, a wide range of new Weinstein domains can be produced, for example exotic cotangent bundles of spheres containing many different closed exact Lagrangians. On the other hand, I will explain how the same line of ideas can be used to prove restrictions on which categories can arise as the Fukaya categories of certain Weinstein domains.

Nonparametric inference of interaction laws in particles/agent systems

Series
Applied and Computational Mathematics Seminar
Time
Monday, December 3, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fei LuJohns Hopkins University
Self-interacting systems of particles/agents arise in many areas of science, such as particle systems in physics, flocking and swarming models in biology, and opinion dynamics in social science. An interesting question is to learn the laws of interaction between the particles/agents from data consisting of trajectories. In the case of distance-based interaction laws, we present efficient regression algorithms to estimate the interaction kernels, and we develop a nonparametric statistic learning theory addressing learnability, consistency and optimal rate of convergence of the estimators. Especially, we show that despite the high-dimensionality of the systems, optimal learning rates can still be achieved.

Convex bodies in high dimensions and algebraic geometry

Series
High Dimensional Seminar
Time
Monday, December 3, 2018 - 12:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yanir RubinshteinUniversity of Maryland

Please Note: Note the special time!

In joint work with J. Martinez-Garcia we study the classification problem of asymptotically log del Pezzo surfaces in algebraic geometry. This turns out to be equivalent to understanding when certain convex bodies in high-dimensions intersect the cube non-trivially. Beyond its intrinsic interest in algebraic geometry this classification is relevant to differential geometery and existence of new canonical metricsin dimension 4.

Introduction to symplectic flexibility

Series
Geometry Topology Seminar Pre-talk
Time
Monday, December 3, 2018 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Oleg LazarevColumbia
I will describe the h-principle philosophy and explain some recent developments on the flexible side of symplectic topology, including Murphy's h-principle for loose Legendrians and Cieliebak and Eliashberg's construction of flexible symplectic manifolds in high-dimensions.

Spectra of limit-periodic Schrödinger operators

Series
Math Physics Seminar
Time
Friday, November 30, 2018 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jake FillmanVirginia Polytechnic Institute
A limit-periodic function on R^d is one which lies in the L^\infty closure of the space of periodic functions. Schr\"odinger operators with limit-periodic potentials may have very exotic spectral properties, despite being very close to periodic operators. Our discussion will revolve around the transition between ``thick'' spectra and ``thin'' spectra.

An Oral Exam: Curvature, Contact Topology and Reeb Dynamics

Series
Geometry Topology Working Seminar
Time
Friday, November 30, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In post-geometrization low dimensional topology, we expect to be able to relate any topological theory of 3-manifolds to the Riemannian geometry of those manifolds. On the other hand, originated from reformalization of classical mechanics, the study of contact structures has become a central topic in low dimensional topology, thanks to the works of Eliashberg, Giroux, Etnyre and Taubes, to name a few. Yet we know very little about how Riemannian geometry fits into the theory.In my oral exam, I will talk about "Ricci-Reeb realization problem" which asks which functions can be prescribed as the Ricci curvature of a "Reeb vector field" associated to a contact manifold. Finally motivated by Ricci-Reeb realization problem and using the previous study of contact dynamics by Hofer-Wysocki-Zehnder, I will prove new topological results using compatible geometry of contact manifolds. The generalization of these results in higher dimensions is the first known results achieving tightness based on curvature conditions.

Low degree points on curves

Series
Algebra Seminar
Time
Friday, November 30, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Isabel VogtMassachusetts Institute of Technology
In this talk we will discuss an arithmetic analogue of the gonality of a nice curve over a number field: the smallest positive integer e such that the points of residue degree bounded by e are infinite. By work of Faltings, Harris--Silverman and Abramovich--Harris, it is understood when this invariant is 1, 2, or 3; by work of Debarre-Fahlaoui these criteria do not generalize. We will focus on scenarios under which we can guarantee that this invariant is actually equal to the gonality using the auxiliary geometry of a surface containing the curve. This is joint work with Geoffrey Smith.

Pages