Seminars and Colloquia by Series

Finite Time Dynamics

Series
School of Mathematics Colloquium
Time
Thursday, February 15, 2018 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonid BunimovichGT
Evolution of random systems as well as dynamical systems with chaotic (stochastic) behavior traditionally (and seemingly naturally) is described by studying only asymptotic in time (when time tends to infinity) their properties. The corresponding results are formulated in the form of various limit theorems (CLT, large deviations, etc). Likewise basically all the main notions (entropy, Lyapunov exponents, etc) involve either taking limit when time goes to infinity or averaging over an infinite time interval. Recently a series of results was obtained demonstrating that finite time predictions for such systems are possible. So far the results are on the intersection of dynamical systems, probability and combinatorics. However, this area suggests some new analytical, statistical and geometric problems to name a few, as well as opens up possibility to obtain new types of results in various applications. I will describe the results on (extremely) simple examples which will make this talk quite accessible.

Finite Balian Low Theorems in $\mathbb{R}^d$

Series
Analysis Seminar
Time
Wednesday, February 14, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josiah ParkGeorgia Institute of technology
We study Balian-Low type theorems for finite signals in $\mathbb{R}^d$, $d\geq 2$.Our results are generalizations of S. Nitzan and J.-F. Olsen's recent work and show that a quantity closelyrelated to the Balian-Low Theorem has the same asymptotic growth rate, $O(\log{N})$ for each dimension $d$. Joint work with Michael Northington.

Crash course in Ergodic Theory

Series
Research Horizons Seminar
Time
Wednesday, February 14, 2018 - 12:10 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonid BunimovichGeorgia Tech
Some basic problems, notions and results of the Ergodic theory will be introduced. Several examples will be discussed. It is also a preparatory talk for the next day colloquium where finite time properties of dynamical and stochastic systems will be discussed rather than traditional questions all dealing with asymptotic in time properties.

New perspectives on Mallows permutations

Series
Stochastics Seminar
Time
Wednesday, February 14, 2018 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Omer AngelUniversity of British Columbia
I will discuss two projects concerning Mallows permutations, with Ander Holroyd, Tom Hutchcroft and Avi Levy. First, we relate the Mallows permutation to stable matchings, and percolation on bipartite graphs. Second, we study the scaling limit of the cycles in the Mallows permutation, and relate it to diffusions and continuous trees.

Global solutions for the generalized SQG equation

Series
PDE Seminar
Time
Tuesday, February 13, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Javier Gómez-SerranoPrinceton University
The SQG equation models the formation of fronts of hot and cold air. In a different direction this system was proposed as a 2D model for the 3D incompressible Euler equations. At the linear level, the equations are dispersive. As of today, it is not known if this equation can produce singularities. In this talk I will discuss some recent work on the global solutions of the SQG equation and related models for small data. Joint work with Diego Cordoba and Alex Ionescu.

Non-Orientable Lagrangian Fillings of Legendrian Knots

Series
Geometry Topology Seminar
Time
Monday, February 12, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Josh SabloffHaverford College
Lagrangian fillings of Legendrian knots are interesting objects that are related, on one hand, to the 4-genus of the underlying smooth knot and, on the other hand, to Floer-type invariants of Legendrian knots. Most work on Lagrangian fillings to date has concentrated on orientable fillings. I will present some first steps in constructions of and obstructions to the existence of (decomposable exact) non-orientable Lagrangian fillings. In addition, I will discuss links between the 4-dimensional crosscap number of a knot and the non-orientable Lagrangian fillings of its Legendrian representatives. This is joint work in progress with Linyi Chen, Grant Crider-Philips, Braeden Reinoso, and Natalie Yao.

The Kac model and (Non-)Equilibrium Statistical Mechanics.

Series
Math Physics Seminar
Time
Friday, February 9, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Federico BonettoGeorgia Tech
I'll report on a project, developed in collaboration with Michael Loss, to extend a very simple model of rarefied gas due to Mark Kac and use it to understand some basic issues of Equilibrium and Non-Equilibrium Statistical Mechanics.

On computation of invariant objects for DDEs

Series
Dynamical Systems Working Seminar
Time
Friday, February 9, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 271
Speaker
Joan GimenoBGSMath-UB
We are going to explain how invariant dynamical objects, such as (quasi)periodic orbits, can numerically be computed for Delay Differential Equations as well as their stability. To this end, we will use Automatic Differentiation techniques and iterative linear solvers with appropiate preconditioners. Additionally some numerical experiments will be presented to illustrate the approaches for each of those objects.This is joint work with A. Jorba.

The Distance Oracle Hierarchy

Series
ACO Student Seminar
Time
Friday, February 9, 2018 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Greg BodwinCS, MIT
A lot of well-studied problems in CS Theory are about making “sketches” of graphs that occupy much less space than the graph itself, but where the shortest path distances of the graph can still be approximately recovered from the sketch. For example, in the literature on Spanners, we seek a sparse subgraph whose distance metric approximates that of the original graph. In Emulator literature, we relax the requirement that the approximating graph is a subgraph. Most generally, in Distance Oracles, the sketch can be an arbitrary data structure, so long as it can approximately answer queries about the pairwise distance between nodes in the original graph. Research on these objects typically focuses on optimizing the worst-case tradeoff between the quality of the approximation and the amount of space that the sketch occupies. In this talk, we will survey a recent leap in understanding about this tradeoff, overturning the conventional wisdom on the problem. Specifically, the tradeoff is not smooth, but rather it follows a new discrete hierarchy in which the quality of the approximation that can be obtained jumps considerably at certain predictable size thresholds. The proof is graph-theoretic and relies on building large families of graphs with large discrepancies in their metrics.

Pages