Seminars and Colloquia by Series

Combinatorial methods in frame theory

Series
High Dimensional Seminar
Time
Wednesday, January 30, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles. 006
Speaker
Alex IosevichUniversity of Rochester

We shall survey a variety of results, some recent, some going back a long time, where combinatorial methods are used to prove or disprove the existence of orthogonal exponential bases and Gabor bases. The classical Erdos distance problem and the Erdos Integer Distance Principle play a key role in our discussion.

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-Sectional Curvature: Lecture 3

Series
Geometry Topology Student Seminar
Time
Wednesday, January 30, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative α-sectional curvature) are universally tight, irrducible and do not admit a Liouville cobordism to tight 3-sphere.

Distance sets, lattice points, and decoupling estimates

Series
Analysis Seminar
Time
Wednesday, January 30, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex IosevichUniversity of Rochester
We are going to discuss some recent results pertaining to the Falconer distance conjecture, including the joint paper with Guth, Ou and Wang establishing the $\frac{5}{4}$ threshold in the plane. We are also going to discuss the extent to which the sharpness of our method and similar results is tied to the distribution of lattice points on convex curves and surfaces.

Exploring the impact of inoculum dose on host immunity and morbidity to inform model-based vaccine design

Series
Mathematical Biology Seminar
Time
Wednesday, January 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andreas HandelUGA
Vaccination is an effective method to protect against infectious diseases. An important consideration in any vaccine formulation is the inoculum dose, i.e., amount of antigen or live attenuated pathogen that is used. Higher levels generally lead to better stimulation of the immune response but might cause more severe side effects and allow for less population coverage in the presence of vaccine shortages. Determining the optimal amount of inoculum dose is an important component of rational vaccine design. A combination of mathematical models with experimental data can help determine the impact of the inoculum dose. We designed mathematical models and fit them to data from influenza A virus (IAV) infection of mice and human parainfluenza virus (HPIV) of cotton rats at different inoculum doses. We used the model to predict the level of immune protection and morbidity for different inoculum doses and to explore what an optimal inoculum dose might be. We show how a framework that combines mathematical models with experimental data can be used to study the impact of inoculum dose on important outcomes such as immune protection and morbidity. We find that the impact of inoculum dose on immune protection and morbidity depends on the pathogen and both protection and morbidity do not always increase with increasing inoculum dose. An intermediate inoculum dose can provide the best balance between immune protection and morbidity, though this depends on the specific weighting of protection and morbidity. Once vaccine design goals are specified with required levels of protection and acceptable levels of morbidity, our proposed framework which combines data and models can help in the rational design of vaccines and determination of the optimal amount of inoculum.

Joint GT-UGA Seminar at UGA - Link Floer homology and the stabilization distance

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Ian ZemkePrinceton University
In this talk, we describe some applications of link Floer homology to the topology of surfaces in 4-space. If K is a knot in S^3, we will consider the set of surfaces in B^4 which bound K. This space is naturally endowed with a plethora of non-Euclidean metrics and pseudo-metrics. The simplest such metric is the stabilization distance, which is the minimum k such that there is a stabilization sequence connecting two surfaces such that no surface in the sequence has genus greater than k. We will talk about how link Floer homology can be used to give lower bounds, as well as some techniques for computing non-trivial examples. This is joint work with Andras Juhasz.

Joint GT-UGA Seminar at UGA - Knot Concordances in S^1 x S^2 and Constructing Akbulut-Ruberman Type Exotic 4-Manifolds

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Eylem YildizMichigan State University
I will discuss knot concordances in 3-manifolds. In particular I will talk about knot concordances of knots in the free homotopy class of S^1 x {pt} in S^1 x S^2. It turns out, we can use some of these concordances to construct Akbulut-Ruberman type exotic 4-manifolds. As a consequence, at the end of the talk we will see absolutely exotic Stein pair of 4-manifolds. This is joint work with Selman Akbulut.

Non-Archimedean Hyperbolicity and Applications

Series
Algebra Seminar
Time
Monday, January 28, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jackson MorrowEmory university
The conjectures of Green—Griffths—Lang predict the precise interplay between different notions of hyperbolicity: Brody hyperbolic, arithmetically hyperbolic, Kobayashi hyperbolic, algebraically hyperbolic, groupless, and more. In his thesis (1993), W.~Cherry defined a notion of non-Archimedean hyperbolicity; however, his definition does not seem to be the "correct" version, as it does not mirror complex hyperbolicity. In recent work, A.~Javanpeykar and A.~Vezzani introduced a new non-Archimedean notion of hyperbolicity, which ameliorates this issue, and also stated a non-Archimedean variant of the Green—Griffths—Lang conjecture. In this talk, I will discuss complex and non-Archimedean notions of hyperbolicity as well as some recent progress on the non-Archimedean Green—Griffths—Lang conjecture. This is joint work with Ariyan Javanpeykar (Mainz) and Alberto Vezzani (Paris 13).

Property testing and removal lemma

Series
Combinatorics Seminar
Time
Friday, January 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fan WeiStanford University
The importance of analyzing big data and in particular very large networks has shown that the traditional notion of a fast algorithm, one that runs in polynomial time, is often insufficient. This is where property testing comes in, whose goal is to very quickly distinguish between objects that satisfy a certain property from those that are ε-far from satisfying that property. It turns out to be closely related to major developments in combinatorics, number theory, discrete geometry, and theoretical computer science. Some of the most general results in this area give "constant query complexity" algorithms, which means the amount of information it looks at is independent of the input size. These results are proved using regularity lemmas or graph limits. Unfortunately, typically the proofs come with no explicit bound for the query complexity, or enormous bounds, of tower-type or worse, as a function of 1/ε, making them impractical. We show by entirely new methods that for permutations, such general results still hold with query complexity only polynomial in 1/ε. We also prove stronger results for graphs through the study of new metrics. These are joint works with Jacob Fox.

Bridge trisections and minimal genus

Series
Geometry Topology Working Seminar
Time
Friday, January 25, 2019 - 14:00 for 2 hours
Location
Skiles 006
Speaker
Peter Lambert-ColeGeorgia Insitute of Technology
The classical degree-genus formula computes the genus of a nonsingular algebraic curve in the complex projective plane. The well-known Thom conjecture posits that this is a lower bound on the genus of smoothly embedded, oriented and connected surface in CP^2. The conjecture was first proved twenty-five years ago by Kronheimer and Mrowka, using Seiberg-Witten invariants. In this talk, we will describe a new proof of the conjecture that combines contact geometry with the novel theory of bridge trisections of knotted surfaces. Notably, the proof completely avoids any gauge theory or pseudoholomorphic curve techniques.

The dimension of an amoeba

Series
Algebra Seminar
Time
Friday, January 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chi Ho YuenUniversity of Bern
An amoeba is the image of a subvariety X of an algebraic torus under the logarithmic moment map. Nisse and Sottile conjectured that the (real) dimension of an amoeba is smaller than the expected one, namely, two times the complex dimension of X, precisely when X has certain symmetry with respect to toric actions. We prove their conjecture and derive a formula for the dimension of an amoeba. We also provide a connection with tropical geometry. This is joint work with Jan Draisma and Johannes Rau.

Pages