Seminars and Colloquia by Series

Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential

Series
Stochastics Seminar
Time
Thursday, February 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Atilla YilmazTemple University
I will present joint work with Elena Kosygina and Ofer Zeitouni in which we prove the homogenization of a class of one-dimensional viscous Hamilton-Jacobi equations with random Hamiltonians that are nonconvex in the gradient variable. Due to the special form of the Hamiltonians, the solutions of these PDEs with linear initial conditions have representations involving exponential expectations of controlled Brownian motion in a random potential. The effective Hamiltonian is the asymptotic rate of growth of these exponential expectations as time goes to infinity and is explicit in terms of the tilted free energy of (uncontrolled) Brownian motion in a random potential. The proof involves large deviations, construction of correctors which lead to exponential martingales, and identification of asymptotically optimal policies.

Interpolative decomposition and its applications

Series
School of Mathematics Colloquium
Time
Thursday, February 7, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Lexing YingStanford University
Interpolative decomposition is a simple and yet powerful tool for approximating low-rank matrices. After discussing the theory and algorithms, I will present a few new applications of interpolative decomposition in numerical partial differential equations, quantum chemistry, and machine learning.

Translation and Systems Biology: Mathematical and computational modeling at the frontier of biomedical research

Series
Job Candidate Talk
Time
Thursday, February 7, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gesham MagombedzeBaylor Institute for Immunology Research

A major challenge in clinical and biomedical research is on translating in-vitro and in- vivo model findings to humans. Translation success rate of all new compounds going through different clinical trial phases is generally about 10%. (i) This field is challenged by a lack of robust methods that can be used to translate model findings to humans (or interpret preclinical finds to accurately design successful patient regimens), hence providing a platform to evaluate a plethora of agents before they are channeled in clinical trials. Using set theory principles of mapping morphisms, we recently developed a novel translational framework that can faithfully map experimental results to clinical patient results. This talk will demonstrate how this method was used to predict outcomes of anti-TB drug clinical trials. (ii) Translation failure is deeply rooted in the dissimilarities between humans and experimental models used; wide pathogen isolates variation, patient population genetic diversities and geographic heterogeneities. In TB, bacteria phenotypic heterogeneity shapes differential antibiotic susceptibility patterns in patients. This talk will also demonstrate the application of dynamical systems in Systems Biology to model (a) gene regulatory networks and how gene programs influence Mycobacterium tuberculosis bacteria metabolic/phenotypic plasticity. (b) And then illustrate how different bacteria phenotypic subpopulations influence treatment outcomes and the translation of preclinical TB therapeutic regimens. In general, this talk will strongly showcase how mathematical modeling can be used to critically analyze experimental and patient data.

Strong edge coloring of subcubic planar graphs

Series
Graph Theory Working Seminar
Time
Wednesday, February 6, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joshua SchroederGeorgia Tech

Strong edge coloring of a graph $G$ is a coloring of the edges of the graph such that each color class is an induced subgraph. The strong chromatic index of $G$ is the smallest number $k$ such that $G$ has a $k$-strong edge coloring. Erdős and Nešetřil conjecture that the strong chromatic index of a graph of max degree $\Delta$ is at most $5\Delta^2/4$ if $\Delta$ is even and $(5\Delta^2-2\Delta + 1)/4$ if $\Delta$ is odd. It is known for $\Delta=3$ that the conjecture holds, and in this talk I will present part of Anderson's proof that the strong chromatic index of a subcubic planar graph is at most $10$

On delocalization of eigenvectors of random non-Hermitian matrices

Series
High Dimensional Seminar
Time
Wednesday, February 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anna LytovaUniversity of Opole

We study delocalization properties of null vectors and eigenvectors of matrices with i.i.d. subgaussian entries. Such properties describe quantitatively how "flat" is a vector and confirm one of the universality conjectures stating that distributions of eigenvectors of many classes of random matrices are close to the uniform distribution on the unit sphere. In particular, we get lower bounds on the smallest coordinates of eigenvectors, which are optimal as the case of Gaussian matrices shows. The talk is based on the joint work with Konstantin Tikhomirov.

Global Convergence of Neuron Birth-Death Dynamics

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, February 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joan Bruna EstrachNew York University
Neural networks with a large number of parameters admit a mean-field description, which has recently served as a theoretical explanation for the favorable training properties of "overparameterized" models. In this regime, gradient descent obeys a deterministic partial differential equation (PDE) that converges to a globally optimal solution for networks with a single hidden layer under appropriate assumptions. In this talk, we propose a non-local mass transport dynamics that leads to a modified PDE with the same minimizer. We implement this non-local dynamics as a stochastic neuronal birth-death process and we prove that it accelerates the rate of convergence in the mean-field limit. We subsequently realize this PDE with two classes of numerical schemes that converge to the mean-field equation, each of which can easily be implemented for neural networks with finite numbers of parameters. We illustrate our algorithms with two models to provide intuition for the mechanism through which convergence is accelerated. Joint work with G. Rotskoff (NYU), S. Jelassi (Princeton) and E. Vanden-Eijnden (NYU).

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-sectional curvature: Lecture 4

Series
Geometry Topology Student Seminar
Time
Wednesday, February 6, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative α-sectional curvature) are universally tight, irreducible and do not admit a Liouville cobordism to the tight 3-sphere.

Sparse bounds for discrete spherical maximal functions

Series
Analysis Seminar
Time
Wednesday, February 6, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dario Alberto MenaUniversity of Costa Rica
We prove sparse bounds for the spherical maximal operator of Magyar,Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint esti-mate. The new method of proof is inspired by ones by Bourgain and Ionescu, is veryefficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arccomponents. The efficiency arises as one only needs a single estimate on each elementof the decomposition.

Descriptions of three-manifolds

Series
Research Horizons Seminar
Time
Wednesday, February 6, 2019 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jennifer HomGeorgia Tech
In this talk, we will discuss various ways to describe three-manifolds by decomposing them into pieces that are (maybe) easier to understand. We will use these descriptions as a way to measure the complexity of a three-manifold.

An Adaptive Sampling Approach for Surrogate Modeling of Expensive Computer Experiments

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 4, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ashwin RenganathanGT AE

In the design of complex engineering systems like aircraft/rotorcraft/spacecraft, computer experiments offer a cheaper alternative to physical experiments due to high-fidelity(HF) models. However, such models are still not cheap enough for application to Global Optimization(GO) and Uncertainty Quantification(UQ) to find the best possible design alternative. In such cases, surrogate models of HF models become necessary. The construction of surrogate models requires an offline database of the system response generated by running the expensive model several times. In general, the training sample size and distribution for a given problem is unknown apriori and can be over/under predicted, which leads to wastage of resources and poor decision-making. An adaptive model building approach eliminates this problem by sequentially sampling points based on information gained in the previous step. However, an approach that works for highly non-stationary response is still lacking in the literature. Here, we use Gaussian Process(GP) models as surrogate model. We employ a novel process-convolution approach to generate parameterized non-stationary.

GPs that offer control on the process smoothness. We show that our approach outperforms existing methods, particularly for responses that have localized non-smoothness. This leads to better performance in terms of GO, UQ and mean-squared-prediction-errors for a given budget of HF function calls.

Pages