Seminars and Colloquia by Series

Link Concordance and Groups

Series
Geometry Topology Seminar
Time
Monday, September 24, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Miriam KuzbaryRice University
Since its introduction in 1966 by Fox and Milnor the knot concordance group has been an invaluable algebraic tool for examining the relationships between 3- and 4- dimensional spaces. Though knots generalize naturally to links, this group does not generalize in a natural way to a link concordance group. In this talk, I will present joint work with Matthew Hedden where we define a link concordance group based on the “knotification” construction of Peter Ozsvath and Zoltan Szabo. This group is compatible with Heegaard Floer theory and, in fact, much of the work on Heegaard Floer theory for links has implied a study of these objects. Moreover, we have constructed a generalization of Milnor’s group-theoretic higher order linking numbers in a novel context with implications for our link concordance group.

Accelerated Optimization in the PDE Framework

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 24, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anthony YezziGeorgia Tech, ECE
Following the seminal work of Nesterov, accelerated optimization methods (sometimes referred to as momentum methods) have been used to powerfully boost the performance of first-order, gradient-based parameter estimation in scenarios were second-order optimization strategies are either inapplicable or impractical. Not only does accelerated gradient descent converge considerably faster than traditional gradient descent, but it performs a more robust local search of the parameter space by initially overshooting and then oscillating back as it settles into a final configuration, thereby selecting only local minimizers with an attraction basin large enough to accommodate the initial overshoot. This behavior has made accelerated search methods particularly popular within the machine learning community where stochastic variants have been proposed as well. So far, however, accelerated optimization methods have been applied to searches over finite parameter spaces. We show how a variational setting for these finite dimensional methods (recently formulated by Wibisono, Wilson, and Jordan) can be extended to the infinite dimensional setting, both in linear functional spaces as well as to the more complicated manifold of 2D curves and 3D surfaces.

Higher Order Linking Numbers

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 24, 2018 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Miriam KuzbaryRice University
In this introductory talk I will outline the general landscape of Milnor’s invariants for links. First introduced in Milnor’s master’s thesis in 1954, these invariants capture fundamental information about links and have remained a fascinating object of study throughout the past half century. In the early 80s, Turaev and Porter independently proved their long-conjectured correspondence with Massey products of the link complement and in 1990, Tim Cochran introduced a beautiful construction to compute them using intersection theory. I will give an overview of these constructions and motivate the importance of these invariants, particularly for the study of links considered up to concordance.

Gradient-like dynamics: motion near a manifold of quasi-equilibria

Series
CDSNS Colloquium
Time
Monday, September 24, 2018 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter BatesMichigan State University
This concerns general gradient-like dynamical systems in Banach space with the property that there is a manifold along which solutions move slowly compared to attraction in the transverse direction. Conditions are given on the energy (or, more generally, Lyapunov functional) that ensure solutions starting near the manifold stay near for a long time or even forever. Applications are given with the vector Allen-Cahn and Cahn-Morral equations. This is joint work with Giorgio Fusco and Georgia Karali.

A simple proof of a generalization of a Theorem by C.L. Siegel

Series
Dynamical Systems Working Seminar
Time
Friday, September 21, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 156
Speaker
Adrian P. BustamanteGeorgia Tech
In this talk I will present a proof of a generalization of a theorem by Siegel, about the existence of an analytic conjugation between an analytic map, $f(z)=\Lambda z +\hat{f}(z)$, and a linear map, $\Lambda z$, in $\mathbb{C}^n$. This proof illustrates a standar technique used to deal with small divisors problems. I will be following the work of E. Zehnder.

Hamiltonicity in randomly perturbed hypergraphs.

Series
Combinatorics Seminar
Time
Friday, September 21, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yi ZhaoGeorgia State University
For integers k>2 and \ell0, there exist \epsilon>0 and C>0 such that for sufficiently large n that is divisible by k-\ell, the union of a k-uniform hypergraph with minimum vertex degree \alpha n^{k-1} and a binomial random k-uniform hypergraph G^{k}(n,p) on the same n-vertex set with p\ge n^{-(k-\ell)-\epsilon} for \ell\ge 2 and p\ge C n^{-(k-1)} for \ell=1 contains a Hamiltonian \ell-cycle with high probability. Our result is best possible up to the values of \epsilon and C and completely answers a question of Krivelevich, Kwan and Sudakov. This is a joint work with Jie Han.

Stein domains and the Oka-Grauert principle

Series
Geometry Topology Working Seminar
Time
Friday, September 21, 2018 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Peter Lambert-ColeGeorgia Insitute of Technology
The Oka-Grauert principle is one of the first examples of an h-principle. It states that for a Stein domain X and a complex Lie group G, the topological and holomorphic classifications of principal G-bundles over X agree. In particular, a complex vector bundle over X has a holomorphic trivialization if and only if it has a continuous trivialization. In these talks, we will discuss the complex geometry of Stein domains, including various characterizations of Stein domains, the classical Theorems A and B, and the Oka-Grauert principle.

Submodular Maximization with Optimal Approximation, Adaptivity and Query Complexity

Series
ACO Student Seminar
Time
Friday, September 21, 2018 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matthew FahrbachCS, Georgia Tech
As a generalization of many classic problems in combinatorial optimization, submodular optimization has found a wide range of applications in machine learning (e.g., in feature engineering and active learning). For many large-scale optimization problems, we are often concerned with the adaptivity complexity of an algorithm, which quantifies the number of sequential rounds where polynomially-many independent function evaluations can be executed in parallel. While low adaptivity is ideal, it is not sufficient for a (distributed) algorithm to be efficient, since in many practical applications of submodular optimization the number of function evaluations becomes prohibitively expensive. Motivated by such applications, we study the adaptivity and query complexity of adaptive submodular optimization. Our main result is a distributed algorithm for maximizing a monotone submodular function with cardinality constraint $k$ that achieves a $(1-1/e-\varepsilon)$-approximation in expectation. Furthermore, this algorithm runs in $O(\log(n))$ adaptive rounds and makes $O(n)$ calls to the function evaluation oracle in expectation. All three of these guarantees are optimal, and the query complexity is substantially less than in previous works. Finally, to show the generality of our simple algorithm and techniques, we extend our results to the submodular cover problem. Joint work with Vahab Mirrokni and Morteza Zadimoghaddam (arXiv:1807.07889).

Matroids and Grassmannians

Series
Student Algebraic Geometry Seminar
Time
Thursday, September 20, 2018 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech
We will give a brief introduction to matroids with a focus on representable matroids. We will also discuss the Plücker embedding of the Grassmannian.

Pages