Seminars and Colloquia by Series

Polyrhythms everywhere!

Series
Other Talks
Time
Monday, April 10, 2017 - 19:00 for 1.5 hours (actually 80 minutes)
Location
Bill Moore Student Sucess Center - Cleary Theatre
Speaker
Tom MorleyGeorgia Institute of Technology
Rhythm is a great thing. It therefore follows that several rhythms at once is even greater. Learn 2:3, 3:4, and 4:5, and a little bit about fractions. Polyrhythms when sped up, lead to harmony and scales. Slower polyrhythms happen in celestial mechanics. A little bit of music, a little bit of mathematics.

Subdivisions of complete graphs

Series
Dissertation Defense
Time
Monday, April 10, 2017 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Yan WangGeorgia Institute of Technology
A subdivision of a graph G, also known as a topological G and denoted by TG, is a graph obtained from G by replacing certain edges of G with internally vertex-disjoint paths. This dissertation has two parts. The first part studies a structural problem and the second part studies an extremal problem. In the first part of this dissertation, we focus on TK_5, or subdivisions of K_5. A well-known theorem of Kuratowski in 1932 states that a graph is planar if, and only if, it does not contain a subdivision of K_5 or K_{3,3}. Wagner proved in 1937 that if a graph other than K_5 does not contain any subdivision of K_{3,3} then it is planar or it admits a cut of size at most 2. Kelmans and, independently, Seymour conjectured in the 1970s that if a graph does not contain any subdivision of K_5 then it is planar or it admits a cut of size at most 4. In this dissertation, we give a proof of the Kelmans-Seymour conjecture. We also discuss several related results and problems. The second part of this dissertation concerns subdivisions of large cliques in C_4-free graphs. Mader conjectured that every C_4-free graph with average degree d contains TK_l with l = \Omega(d). Komlos and Szemeredi reduced the problem to expanders and proved Mader's conjecture for n-vertex expanders with average degree d < exp( (log n)^(1/8) ). In this dissertation, we show that Mader's conjecture is true for n-vertex expanders with average degree d < n^0.3, which improves Komlos and Szemeredi's quasi-polynomial bound to a polynomial bound. As a consequence, we show that every C_4-free graph with average degree d contains a TK_l with l = \Omega(d/(log d)^c) for any c > 3/2. We note that Mader's conjecture has been recently verified by Liu and Montgomery.

Planar Legendrian graphs

Series
Geometry Topology Seminar
Time
Monday, April 10, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter Lambert-ColeIndiana University
A foundational result in the study of contact geometry and Legendrian knots is Eliashberg and Fraser's classification of Legendrian unknots They showed that two homotopy-theoretic invariants - the Thurston-Bennequin number and rotation number - completely determine a Legendrian unknot up to isotopy. Legendrian spatial graphs are a natural generalization of Legendrian knots. We prove an analogous result for planar Legendrian graphs. Using convex surface theory, we prove that the rotation invariant and Legendrian ribbon are a complete set of invariants for planar Legendrian graphs. We apply this result to completely classify planar Legendrian embeddings of the Theta graph. Surprisingly, this classification shows that Legendrian graphs violate some proven and conjectured properties of Legendrian knots. This is joint work with Danielle O'Donnol.​​

Non-euclidean virtual reality

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 10, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Elisabetta MatsumotoGT Physics
The properties of euclidean space seem natural and obvious to us, to thepoint that it took mathematicians over two thousand years to see analternative to Euclid’s parallel postulate. The eventual discovery ofhyperbolic geometry in the 19th century shook our assumptions, revealingjust how strongly our native experience of the world blinded us fromconsistent alternatives, even in a field that many see as purelytheoretical. Non-euclidean spaces are still seen as unintuitive and exotic,but with direct immersive experiences we can get a better intuitive feel forthem. The latest wave of virtual reality hardware, in particular the HTCVive, tracks both the orientation and the position of the headset within aroom-sized volume, allowing for such an experience. We use this nacenttechnology to explore the three-dimensional geometries of theThurston/Perelman geometrization theorem. This talk focuses on oursimulations of H³ and H²×E.

On the persistence of invariant tori for dynamical systems

Series
CDSNS Colloquium
Time
Monday, April 10, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Michela ProcesiDipartimento di Matematica e Fisica - Universita&amp;#039; di Roma Tre
Given a dynamical system (in finite or infinite dimension) it is very natural to look for finite dimensional invariant subspaces on which the dynamics is very simple. Of particular interest are the invariant tori on which the dynamics is conjugated to a linear one. The problem of persistence under perturbations of such objects has been widely studied starting form the 50's, and this gives rise to the celebrated KAM theory. The aim of this talk is to give an overview of the main difficulties and strategies, having in mind the application to PDEs.

Product formulas for volumes of flow polytopes

Series
Combinatorics Seminar
Time
Friday, April 7, 2017 - 15:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Karola MeszarosCornell University
The flow polytope associated to an acyclic graph is the set of all nonnegative flows on the edges of the graph with a fixed netflow at each vertex. We will examine flow polytopes arising from permutation matrices, alternating sign matrices and Tesler matrices. Our inspiration is the Chan-Robins-Yuen polytope (a face of the polytope of doubly-stochastic matrices), whose volume is equal to the product of the first n Catalan numbers (although there is no known combinatorial proof of this fact!). The volumes of the polytopes we study all have nice product formulas.

Random walks with local memory on Z and Z^2

Series
Combinatorics Seminar
Time
Friday, April 7, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lionel LevineCornell University
The theme of this talk is walks in a random environment of "signposts" altered by the walker. I'll focus on three related examples: 1. Rotor walk on Z^2. Your initial signposts are independent with the uniform distribution on {North,East,South,West}. At each step you rotate the signpost at your current location clockwise 90 degrees and then follow it to a nearest neighbor. Priezzhev et al. conjectured that in n such steps you will visit order n^{2/3} distinct sites. I'll outline an elementary proof of a lower bound of this order. The upper bound, which is still open, is related to a famous question about the path of a light ray in a grid of randomly oriented mirrors. This part is joint work with Laura Florescu and Yuval Peres. 2. p-rotor walk on Z. In this walk you flip the signpost at your current location with probability 1-p and then follow it. I'll explain why your scaling limit will be a Brownian motion perturbed at its extrema. This part is joint work with Wilfried Huss and Ecaterina Sava-Huss. 3. p-rotor walk on Z^2. Rotate the signpost at your current location clockwise with probability p and counterclockwise with probability 1-p, and then follow it. This walk “organizes” its environment of signposts. The stationary environment is an orientation of the uniform spanning forest, plus one additional edge. This part is joint work with Swee Hong Chan, Lila Greco and Boyao Li.

Smooth equivalence of expanding maps of the circle

Series
Dynamical Systems Working Seminar
Time
Friday, April 7, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Prof. Rafael de la LlaveSchool of Math, Georgia Tech
It is well known that periodic orbits give all the information about dynamical systems, at least for expanding maps, for which the periodic orbits are dense. This turns out to be true in dimensions 1 and 2, and false in dimension 4 or higher.We will present a proof that two $C^\infty$ expanding maps of the circle, which are topologically equivalent are $C^\infty$ conjugate if and only if the derivatives or the return map at periodic orbits are the same.

Scalings and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations

Series
Stochastics Seminar
Time
Friday, April 7, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 270
Speaker
David HerzogIowa State University
We discuss scaling methods which can be used to solve low mode control problems for nonlinear partial differential equations. These methods lead naturally to a infinite-dimensional generalization of the notion of saturation, originally due to Jurdjevic and Kupka in the finite-dimensional setting of ODEs. The methods will be highlighted by applying them to specific equations, including reaction-diffusion equations, the 2d/3d Euler/Navier-Stokes equations and the 2d Boussinesq equations. Applications to support properties of the laws solving randomly-forced versions of each of these equations will be noted.

Strategic Stable Marriage

Series
ACO Student Seminar
Time
Friday, April 7, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
James BaileyGeorgia Tech
We study stable marriage where individuals strategically submit private preference information to a publicly known stable marriage algorithm. We prove that no stable marriage algorithm ensures actual stability at every Nash equilibrium when individuals are strategic. More specifically, we show that any rational marriage, stable or otherwise, can be obtained at a Nash equilibrium. Thus the set of Nash equilibria provides no predictive value nor guidance for mechanism design. We propose the following new minimal dishonesty equilibrium refinement, supported by experimental economics results: an individual will not strategically submit preference list L if there exists a more honest L' that yields as preferred an outcome. Then for all marriage algorithms satisfying monotonicity and IIA, every minimally dishonest equilibrium yields a sincerely stable marriage. This result supports the use of algorithms less biased than the (Gale-Shapley) man-optimal, which we prove yields the woman-optimal marriage in every minimally dishonest equilibrium. However, bias cannot be totally eliminated, in the sense that no monotonic IIA stable marriage algorithm is certain to yield the egalitarian-optimal marriage in a minimally dishonest equilibrium – thus answering a 28-year old open question of Gusfield and Irving's in the negative. Finally, we show that these results extend to student placement problems, where women are polygamous and honest, but not to admissions problems, where women are both polygamous and strategic. Based on joint work with Craig Tovey at Georgia Tech.

Pages