Seminars and Colloquia by Series

Results in Real Algebraic Geometry Concerning Semi-Algebraic Sets

Series
Research Horizons Seminar
Time
Wednesday, March 12, 2014 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Sal BaroneSchool of math
We will discuss a few introductory results in real algebraic geometry concerning semi-algebraic sets. A semi-algebraic subset of R^k is the set of solutions of a boolean combination of finitely many real polynomial equalities and inequalities. These sets arise naturally in many areas of mathematics as well as other scientific disciplines, such as discrete and computational geometry or the configuration spaces in robotic motion planning. After providing some basic definitions and examples, we will outline the proof of a fundamental result, the Oleinik-Petrovsky-Thom-Milnor bound of d(2d-1)^{k-1} on the sum of the Betti numbers of a real algebraic variety, as well as indicate the direction of recent and ongoing research generalizing this result.

Spatial epidemic models: lattice differential equation analysis of wave and droplet-like behavior

Series
Mathematical Biology Seminar
Time
Wednesday, March 12, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chi-Jen WangIowa State
Spatially discrete stochastic models have been implemented to analyze cooperative behavior in a variety of biological, ecological, sociological, physical, and chemical systems. In these models, species of different types, or individuals in different states, reside at the sites of a periodic spatial grid. These sites change or switch state according to specific rules (reflecting birth or death, migration, infection, etc.) In this talk, we consider a spatial epidemic model where a population of sick or healthy individual resides on an infinite square lattice. Sick individuals spontaneously recover at rate *p*, and healthy individual become infected at rate O(1) if they have two or more sick neighbors. As *p* increases, the model exhibits a discontinuous transition from an infected to an all healthy state. Relative stability of the two states is assessed by exploring the propagation of planar interfaces separating them (i.e., planar waves of infection or recovery). We find that the condition for equistability or coexistence of the two states (i.e., stationarity of the interface) depends on orientation of the interface. We also explore the evolution of droplet-like configurations (e.g., an infected region embedded in an all healthy state). We analyze this stochastic model by applying truncation approximations to the exact master equations describing the evolution of spatially non-uniform states. We thereby obtain a set of discrete (or lattice) reaction-diffusion type equations amenable to numerical analysis.

Mixed type problems in transonic flow and isometric embedding

Series
PDE Seminar
Time
Tuesday, March 11, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dehua WangUniversity of Pittsburgh
Some mixed-type PDE problems for transonic flow and isometric embedding will be discussed. Recent results on the solutions to the hyperbolic-elliptic mixed-type equations and related systems of PDEs will be presented.

Tales from the front, part II

Series
Professional Development Seminar
Time
Tuesday, March 11, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christine HeitschGeorgia Tech
A panel discussion featuring postdocs (Kelly Bickel, Adam Fox, Kit-Ho Mak, David Murrugarra, and Will Perkins) who have been on the job market.

Singular Learning Theory

Series
Algebra Seminar
Time
Monday, March 10, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Elizabeth GrossNCSU
Bayesian approaches to statistical model selection requires the evaluation of the marginal likelihood integral, which, in general, is difficult to obtain. When the statistical model is regular, it is well-known that the marginal likelihood integral can be approximated using a function of the maximized log-likelihood function and the dimension of the model. When the model is singular, Sumio Watanabe has shown that an approximation of the marginal likelihood integral can be obtained through resolution of singularities, a result that has intimately tied machine learning and Bayesian model selection to computational algebraic geometry. This talk will be an introduction to singular learning theory with the factor analysis model as a running example.

On the classification and asymptotic behavior of the symmetric capillary surfaces

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 10, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ray TreinenTexas State, San Marcos
The symmetric configurations for the equilibrium shape of a fluid interfaceare given by the geometric differential equation mean curvature isproportional to height. The equations are explored numerically tohighlight the differences in classically treated capillary tubes andsessile drops, and what has recently emerged as annular capillary surfaces. Asymptotic results are presented.

A new type of exceptional Laguerre polynomials

Series
Analysis Seminar
Time
Monday, March 10, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Conni LiawBaylor University
The Bochner Classification Theorem (1929) characterizes the polynomial sequences $\{p_n\}_{n=0}^\infty$, with $\deg p_n=n$ that simultaneously form a complete set of eigenstates for a second order differential operator and are orthogonal with respect to a positive Borel measure having finite moments of all orders: Hermite, Laguerre, Jacobi and Bessel polynomials. In 2009, G\'{o}mez-Ullate, Kamran, and Milson found that for sequences $\{p_n\}_{n=1}^\infty$, with $\deg p_n=n$ (i.e.~without the constant polynomial) the only such sequences are the \emph{exceptional} Laguerre and Jacobi polynomials. They also studied two Types of Laguerre polynomial sequences which omit $m$ polynomials. We show the existence of a new "Type III" family of Laguerre polynomials and focus on its properties.

Graphs with the maximum number of proper q-colorings

Series
Combinatorics Seminar
Time
Friday, March 7, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaCarnegie Mellon
We study an old problem of Linial and Wilf to find the graphs with n vertices and m edges which maximize the number of proper q-colorings of their vertices. In a breakthrough paper, Loh, Pikhurko and Sudakov asymptotically reduced the problem to an optimization problem. We prove the following structural result which tells us how the optimal solutionlooks like: for any instance, each solution of the optimization problem corresponds to either a complete multipartite graph or a graph obtained from a complete multipartite graph by removing certain edges. We then apply this result on optimal graphs to general instances, including a conjecture of Lazebnik from 1989 which asserts that for any q>=s>= 2, the Turan graph T_s(n) has the maximum number of q-colorings among all graphs with the same number of vertices and edges. We disprove this conjecture by providing infinity many counterexamples in the interval s+7 <= q <= O(s^{3/2}). On the positive side, we show that when q= \Omega(s^2) the Turan graph indeed achieves the maximum number of q-colorings. Joint work with Humberto Naves.

The subadditive ergodic theorem

Series
Dynamical Systems Working Seminar
Time
Friday, March 7, 2014 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Mikel J. de VianaGeorgia Tech
We will present a proof of the subadditive ergodic theorem. This is part of a reading seminar geared towards understanding of Smooth Ergodic Theory. (The study of dynamical systems using at the same time tools from measure theory and from differential geometry)It should be accesible to graduate students and the presentation is informal. The first goal will be a proof of the Oseledets multiplicative ergodic theorem for random matrices. Then, we will try to cover the Pesin entropy formula, invariant manifolds, etc.

Pages