- You are here:
- GT Home
- Home
- News & Events

Wednesday, January 28, 2009 - 11:00 ,
Location: Skiles 255 ,
Mike Boots ,
University of Sheffield ,
Organizer:

Series: PDE Seminar

Image segmentation has been widely studied, specially since Mumford-Shah functional was been proposed. Many theoretical works as well as numerous extensions have been studied rough out the years. In this talk, I will focus on couple of variational models for multi-phase segmentation. For the first model, we propose a model built upon the phase transition model of Modica and Mortola in material sciences and a properly synchronized fitting term that complements it. For the second model, we propose a variational functional for an unsupervised multiphase segmentation, by adding scale information of each phase. This model is able to deal with the instability issue associated with choosing the number of phases for multiphase segmentation.

Tuesday, January 27, 2009 - 11:05 ,
Location: Skiles 269 ,
Philip Protter ,
Cornell University ,
Organizer: Christian Houdre

Series: CDSNS Colloquium

I will present a generalization of a classical within-host model of a viral infection that includes multiple strains of the virus. The strains are allowed to mutate into each other. In the absence of mutations, the fittest strain drives all other strains to extinction. Treating mutations as a small perturbation, I will present a global stability result of the perturbed equilibrium. Whether a particular strain survives is determined by the connectivity of the graph describing all possible mutations.

Monday, January 26, 2009 - 13:00 ,
Location: Skiles 255 ,
Ming-Jun Lai ,
University of Georgia ,
Organizer: Haomin Zhou

I will first explain why we want to find the sparse solutions of underdetermined linear systems. Then I will explain how to solve the systems using \ell_1, OGA, and \ell_q approaches. There are some sufficient conditions to ensure that these solutions are the sparse one, e.g., some conditions based on restricted isometry property (RIP) by Candes, Romberg, and Tao'06 and Candes'08. These conditions are improved recently in Foucart and Lai'08. Furthermore, usually, Gaussian random matrices satisfy the RIP. I shall explain random matrices with strictly sub-Gaussian random variables also satisfy the RIP.

Friday, January 23, 2009 - 15:00 ,
Location: Skiles 269 ,
Mohammad Ghomi ,
Ga Tech ,
Organizer: John Etnyre

$h$-Principle consists of a powerful collection of tools developed by Gromov and others to solve underdetermined partial differential equations or relations which arise in differential geometry and topology. In these talks I will describe the Holonomic approximation theorem of Eliashberg-Mishachev, and discuss some of its applications including the sphere eversion theorem of Smale. Further I will discuss the method of convex integration and its application to proving the $C^1$ isometric embedding theorem of Nash.

Series: Other Talks

h-Principle consists of a powerful collection of tools developed by Gromov and others to solve underdetermined partial differential equations or relations which arise in differential geometry and topology. In these talks I will describe the Holonomic approximation theorem of Eliashberg-Mishachev, and discuss some of its applications including the sphere eversion theorem of Smale. Further I will discuss the method of convex integration and its application to proving the C^1 isometric embedding theorem of Nash.

Series: Combinatorics Seminar

In this talk, I will discuss chip-firing games on graphs, and the related Jacobian groups. Additionally, I will describe elliptic curves over finite fields, and how such objects also have group structures. For a family of graphs obtained by deforming the sequence of wheel graphs, the cardinalities of the Jacobian groups satisfy a nice reciprocal relationship with the orders of elliptic curves as we consider field extensions. I will finish by discussing other surprising ways that these group structures are analogous. Some of this research was completed as part of my dissertation work at the University of California, San Diego under Adriano Garsia's guidance.

Series: SIAM Student Seminar

In this talk, I will focus on some interesting examples in the conditional expectation and martingale, for example, gambling system "Martingale", Polya's urn scheme, Galton-Watson process, Wright-Fisher model of population genetics. I will
skip the theorems and properties. Definitions to support the examples will be introduced. The talk will not assume a lot of probability, just some basic measure theory.

Series: School of Mathematics Colloquium

In this talk we will review some of the global asymptotic results obtained during the last two decades in the theory of the classical Painleve equations with the help of the Isomonodromy - Riemann-Hilbert method. The results include the explicit derivation of the asymptotic connection formulae, the explicit description of linear and nonlinear Stokes phenomenon and the explicit evaluation of the distribution of poles. We will also discuss some of the most recent results emerging due to the appearance of Painleve equations in random matrix theory. The Riemann-Hilbert method will be outlined as well.