Seminars and Colloquia by Series

Global regularity for water waves in two dimensions

Series
Job Candidate Talk
Time
Thursday, December 12, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fabio PusateriPrinceton University
We will start by describing some general features of quasilinear dispersive and wave equations. In particular we will discuss a few important aspects related to the question of global regularity for such equations. We will then consider the water waves system for the evolution of a perfect fluid with a free boundary. In 2 spatial dimensions, under the influence of gravity, we prove the existence of global irrotational solutions for suitably small and regular initial data. We also prove that the asymptotic behavior of solutions as time goes to infinity is different from linear, unlike the 3 dimensional case.

Localization and delocalization in the Anderson model on random regular graphs

Series
Job Candidate Talk
Time
Tuesday, December 10, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leander GeisingerPrinceton University
The Anderson model on a discrete graph is given by the graph Laplacian perturbed by a random potential. I study spectral properties of this random Schroedinger operator on a random regular graph of fixed degree in the limit where the number of vertices tends to infinity.The choice of model is motivated by its relation to two important and well-studied models of random operators: On the one hand there are similarities to random matrices, for instance to Wigner matrices, whose spectra are known to obey universal laws. On the other hand a random Schroedinger operator on a random regular graph is expected to approximate the Anderson model on the homogeneous tree, a model where both localization (characterized by pure point spectrum) and delocalization (characterized by absolutely continuous spectrum) was established.I will show that the Anderson model on a random regular graph also exhibits distinct spectral regimes of localization and of delocalization. One regime is characterized by exponential decay of eigenvectors. In this regime I analyze the local eigenvalue statistics and prove that the point process generated by the eigenvalues of the random operator converges in distribution to a Poisson process.In contrast to that I will also show that the model exhibits a spectral regime of delocalization where eigenvectors are not exponentially localized.

Interlacing Families and Bipartite Ramanujan Graphs

Series
Joint ACO and ARC Colloquium
Time
Monday, December 9, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Klaus 1116W
Speaker
Adam MarcusCrisply.com and Yale University
We will outline the proof that shows the existence of bipartite Ramanujan Graphs of any degree as well as some of mixed degrees. Our approach uses the idea of Bilu and Linial to show that there exists a 2-lift of a given Ramanujan graph which maintains the Ramanujan property. This will include introducing a new technique for establishing the existence of certain combinatorial objects that we call the "Method of Interlacing Polynomials." This talk is intended to be accessible by a general computer science audience, and represents joint work with Dan Spielman and Nikhil Srivastava.- See more at: http://www.arc.gatech.edu/events/arc-colloquium-adam-marcus-crisplycom-and-yale-university#sthash.qdZRaV1k.dpuf

Galois-equivariant and motivic homotopy

Series
Geometry Topology Seminar
Time
Monday, December 9, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kyle OrmsbyMIT
For a group G, stable G-equivariant homotopy theory studies (the stabilizations of) topological spaces with a G-action up to G-homotopy. For a field k, stable motivic homotopy theory studies varieties over k up to (a stable notion of) homotopy where the affine line plays the role of the unit interval. When L/k is a finite Galois extension with Galois group G, there is a functor F from the G-equivariant stable homotopy category to the stable motivic homotopy category of k. If k is the complex numbers (or any algebraically closed characteristic 0 field) and L=k (so G is trivial), then Marc Levine has shown that F is full and faithful. If k is the real numbers (or any real closed field) and L=k[i], we show that F is again full and faithful, i.e., that there is a "copy" of stable C_2-equivariant homotopy theory inside of the stable motivic homotopy category of R. We will explore computational implications of this theorem.This is a report on joint work with Jeremiah Heller.

The Jones polynomial as Euler characteristic

Series
School of Mathematics Colloquium
Time
Friday, December 6, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Robert LipshitzUniversity of North Carolina, Chapel Hill

Please Note: Kickoff of the Tech Topology Conference from December 6-8, 2013. For complete details see ttc.gatech.edu

We will start by defining the Jones polynomial of a knot and talking about some of its classical applications to knot theory. We will then define a fancier version ("categorification") of the Jones polynomial, called Khovanov homology and mention some of its applications. We will conclude by talking about a further refinement, a Khovanov homotopy type, sketch some of the ideas behind its construction, and mention some applications. (This last part is joint work with Sucharit Sarkar.) At least the first half of the talk should be accessible to non-topologists.

Interlacing Families and Kadison--Singer

Series
ACO Colloquium
Time
Friday, December 6, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Adam MarcusCrisply.com and Yale Unversity
We will outline the proof that gives a positive solution to Weaver's conjecture $KS_2$. That is, we will show that any isotropic collection of vectors whose outer products sum to twice the identity can be partitioned into two parts such that each part is a small distance from the identity. The distance will depend on the maximum length of the vectors in the collection but not the dimension (the two requirements necessary for Weaver's reduction to a solution of Kadison--Singer). This will include introducing a new technique for establishing the existence of certain combinatorial objects that we call the "Method of Interlacing Polynomials." This talk is intended to be accessible by a general mathematics audience, and represents joint work with Dan Spielman and Nikhil Srivastava.

Distributions of Angles in Random Packing on Spheres

Series
Stochastics Seminar
Time
Thursday, December 5, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tiefeng JiangUniversity of Minnesota
We study the asymptotic behaviors of the pairwise angles among n randomly and uniformly distributed unit vectors in p-dimensional spaces as the number of points n goes to infinity, while the dimension p is either fixed or growing with n. For both settings, we derive the limiting empirical distribution of the random angles and the limiting distributions of the extreme angles. The results reveal interesting differences in the two settings and provide a precise characterization of the folklore that ``all high-dimensional random vectors are almost always nearly orthogonal to each other". Applications to statistics and connections with some open problems in physics and mathematics are also discussed. This is a joint work with Tony Cai and Jianqing Fan.

Out-of-equilibrium dynamics for the nonlinear Schroedinger equation: From energy cascades to weak turbulence

Series
Job Candidate Talk
Time
Thursday, December 5, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zaher HaniCourant Institute, New York University
Out-of-equilibrium dynamics are a characteristic feature of the long-time behavior of nonlinear dispersive equations on bounded domains. This is partly due to the fact that dispersion does not translate into decay in this setting (in contrast to the case of unbounded domains like $R^d$). In this talk, we will take the cubic nonlinear Schroedinger equation as our model, and discuss some aspects of its out-of-equilibrium dynamics, from energy cascades (i.e. migration of energy from low to high frequencies) to weak turbulence.

Non-lifting of a subgroup of the mapping class group

Series
Geometry Topology Student Seminar
Time
Wednesday, December 4, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Robert KroneGeorgia Tech
The mapping class group of a surface is a quotient of the group of orientation preserving diffeomorphisms. However the mapping class group generally can't be lifted to the group of diffeomorphisms, and even many subgroups can't be lifted. Given a surface S of genus at least 2 and a marked point z, the fundamental group of S naturally injects to a subgroup of MCG(S,z). I will present a result of Bestvina-Church-Souto that this subgroup can't be lifted to the diffeomorphisms fixing z.

Pages