Seminars and Colloquia by Series

Optimal error estimates in operator-norm approximations of some semi-groups

Series
Analysis Seminar
Time
Wednesday, March 14, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vygantas PaulauskasVilnius University
In the talk some problems related with the famous Chernoff square root of n - lemma in the theory of approximation of some semi-groups of operators will be discussed. We present some optimal bounds in these approximations (one of them is Euler approximation) and two new classes of operators, generalizing sectorial and quasi-sectorial operators will be introduced. The talk is based on two papers [V. Bentkus and V. Paulauskas, Letters in Math. Physics, 68, (2004), 131-138] and [V. Paulauskas, J. Functional Anal., 262, (2012), 2074-2099]

Markov Chains at the Interface of Combinatorics, Computing, and Statistical Physics

Series
Dissertation Defense
Time
Wednesday, March 14, 2012 - 13:00 for 2 hours
Location
Skiles 005
Speaker
Amanda Pascoe StreibSchool of Mathematics, Georgia Tech
The fields of statistical physics, discrete probability, combinatorics, and theoretical computer science have converged around efforts to understand random structures and algorithms. Recent activity in the interface of these fields has enabled tremendous breakthroughs in each domain and has supplied a new set of techniques for researchers approaching related problems. This thesis makes progress on several problems in this interface whose solutions all build on insights from multiple disciplinary perspectives. First, we consider a dynamic growth process arising in the context of DNA-based self-assembly. The assembly process can be modeled as a simple Markov chain. We prove that the chain is rapidly mixing for large enough bias in regions of Z^d. The proof uses a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias, where the bias can vary depending on the location of the tile, which arises in the nanotechnology application. Moreover, we use intuition from statistical physics to construct a choice of the biases for which the Markov chain M_{mon} requires exponential time to converge. Second, we consider a related problem regarding the convergence rate of biased permutations that arises in the context of self-organizing lists. The Markov chain M_{nn} in this case is a nearest-neighbor chain that allows adjacent transpositions, and the rate of these exchanges is governed by various input parameters. It was conjectured that the chain is always rapidly mixing when the inversion probabilities are positively biased, i.e., we put nearest neighbor pair x < y in order with bias 1/2 <= p_{xy} <= 1 and out of order with bias 1-p_{xy}. The Markov chain M_{mon} was known to have connections to a simplified version of this biased card-shuffling. We provide new connections between M_{nn} and M_{mon} by using simple combinatorial bijections, and we prove that M_{nn} is always rapidly mixing for two general classes of positively biased {p_{xy}}. More significantly, we also prove that the general conjecture is false by exhibiting values for the p_{xy}, with 1/2 <= p_{xy} <= 1 for all x < y, but for which the transposition chain will require exponential time to converge. Finally, we consider a model of colloids, which are binary mixtures of molecules with one type of molecule suspended in another. It is believed that at low density typical configurations will be well-mixed throughout, while at high density they will separate into clusters. This clustering has proved elusive to verify, since all local sampling algorithms are known to be inefficient at high density, and in fact a new nonlocal algorithm was recently shown to require exponential time in some cases. We characterize the high and low density phases for a general family of discrete interfering binary mixtures by showing that they exhibit a "clustering property" at high density and not at low density. The clustering property states that there will be a region that has very high area, very small perimeter, and high density of one type of molecule. Special cases of interfering binary mixtures include the Ising model at fixed magnetization and independent sets.

Rigidity properties of higher rank abelian actions.

Series
CDSNS Colloquium
Time
Wednesday, March 14, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Boris KalininUniv. of Southern Alabama
Hyperbolic actions of Z^k and R^k arise naturally in algebraic and geometric context. Algebraic examples include actions by commuting automorphisms of tori or nilmanifolds and, more generally, affine and homogeneous actions on cosets of Lie groups. In contrast to hyperbolic actions of Z and R, i.e. Anosov diffeomorphisms and flows, higher rank actions exhibit remarkable rigidity properties, such as scarcity of invariant measures and smooth conjugacy to a small perturbation. I will give an overview of results in this area and discuss recent progress.

The stability of cylindrical pendant drops and soap films

Series
PDE Seminar
Time
Tuesday, March 13, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
John McCuanGeorgia Tech
The stability of a liquid drop of prescribed volume hanging from a circular cylindrical tube in a gravity field has been a problem of continuing interest. This problem was treated variationally in the late '70s by Henry Wente who showed there was a continuous family indexed by increasing volume which terminated in a final unstable equilibrium due to one or the other of two specific geometric mechanisms. I will describe a similar problem arising in mathematical biology for drops at the bottom of a rectangular tube and explain, among other things, how the associated instability occurs through exactly three physical mechanisms.

Thresholds and Expectation Thresholds

Series
School of Mathematics Colloquium
Time
Tuesday, March 13, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jeff KahnMathematics, Rutgers University
Thresholds for increasing properties are a central concern in probabilistic combinatorics and elsewhere. (An increasing property, say F, is a superset-closed family of subsets of some (here finite) set X; the threshold question for such an F asks, roughly, about how many random elements of X should one choose to make it likely that the resulting set lies in F? For example: about how many random edges from the complete graph K_n are typically required to produce a Hamiltonian cycle?) We'll discuss recent progress and lack thereof on a few threshold-type questions, and try to say something about a ludicrously general conjecture of G. Kalai and the speaker to the effect that there is always a pretty good naive explanation for a threshold being what it is.

Physics Colloquium - The Physics of How Viruses Make New Viruses

Series
Other Talks
Time
Monday, March 12, 2012 - 15:00 for 1 hour (actually 50 minutes)
Location
Markus Nano Conference Rm. 1116
Speaker
Rob PhillipsCal Tech
The viruses that infect bacteria have a hallowed position in the development of modern biology, and once inspired Max Delbruck refer to them as "the atom of biology". Recently, these viruses have become the subject of intensive physical investigation. Using single-molecule techniques, it is actually possible to watch these viruses in the act of packing and ejecting their DNA. This talk will begin with a general introduction to viruses and their life cycles and will then focus on simple physical arguments about the forces that attend viral DNA packaging and ejection, predictions about the ejection process and single-molecule measurements of ejection itself.

Asymptotic Geometry of Teichmuller Space and Divergence

Series
Geometry Topology Seminar
Time
Monday, March 12, 2012 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Harold SultanColumbia University
I will talk about the asymptotic geometry of Teichmuller space equipped with the Weil-Petersson metric. In particular, I will give a criterion for determining when two points in the asymptotic cone of Teichmuller space can be separated by a point; motivated by a similar characterization in mapping class groups by Behrstock-Kleiner-Minsky-Mosher and in right angled Artin groups by Behrstock-Charney. As a corollary, I will explain a new way to uniquely characterize the Teichmuller space of the genus two once punctured surface amongst all Teichmuller space in that it has a divergence function which is superquadratic yet subexponential.

Linear cocycles over hyperbolic systems and their periodic data

Series
CDSNS Colloquium
Time
Monday, March 12, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Victoria SadovskayaUniv. of Southern Alabama
A linear cocycle over a diffeomorphism f of a manifold M is an automorphism of a vector bundle over M that projects to f. An important example is given by the differential Df or its restriction to an invariant sub-bundle. We consider a Holder continuous linear cocycle over a hyperbolic system and explore what conclusions can be made based on its properties at the periodic points of f. In particular, we obtain criteria for a cocycle to be isometric or conformal and discuss applications and further developments.

Neighborly measures for sampling independent sets, and a perturbative approach to the question of uniqueness

Series
ACO Student Seminar
Time
Friday, March 9, 2012 - 13:00 for 1 hour (actually 50 minutes)
Location
Executive classroom, ISyE Main Building
Speaker
David GoldbergISyE
Recently, there has been great interest in understanding the fundamental limits of our ability to sample from the independent sets (i.s.) of a graph. One approach involves the study of the so-called hardcore model, in which each i.s. is selected with probability proportional to some fixed activity $\lambda$ raised to the cardinality of the given i.s. It is well-known that for any fixed degree $\Delta$, there exists a critical activity $\lambda_{\Delta}$ s.t. for all activities below $\lambda_{\Delta}$, the sampled i.s. enjoys a long-range independence (a.k.a. uniqueness) property when implemented on graphs with maximum degree $\Delta$, while for all activities above $\lambda_{\Delta}$, the sampled i.s. exhibits long-range dependencies. Such phase transitions are known to have deep connections to the inherent computational complexity of the underlying combinatorial problems. In this talk, we study a family of measures which generalizes the hardcore model by taking more structural information into account, beyond just the number of nodes belonging to the i.s., with the hope of further probing the fundamental limits of what we can learn about the i.s. of a graph using only local information. In our model, the probability assigned to a given i.s. depends not only on its cardinality, but also on how many excluded nodes are adjacent to exactly $k$ nodes belonging to the i.s., for each $k$, resulting in a parameter for each $k$. We generalize the notion of critical activity to these ``neighborly measures", and give necessary and sufficient conditions for long-range independence when certain parameters satisfy a log-convexity(concavity) requirement. To better understand the phase transitions in this richer model, we view the classical critical activity as a particular point in the parameter space, and ask which directions can one move and still maintain long-range independence. We show that the set of all such ``directions of uniqueness” has a simple polyhedral description, which we use to study how moving along these directions changes the probabilities associated with the sampled i.s. We conclude by discussing implications for choosing how to sample when trying to optimize a linear function of the underlying probabilities.

Augmenting undirected node-connectivity by one

Series
Graph Theory Seminar
Time
Thursday, March 8, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Laszlo VeghCoC, GT
In the node-connectivity augmentation problem, we want to add a minimum number of new edges to an undirected graph to make it k-node-connected. The complexity of this question is still open, although the analogous questions of both directed and undirected edge-connectivity and directed node-connectivity augmentation are known to be polynomially solvable. I present a min-max formula and a polynomial time algorithm for the special case when the input graph is already (k-1)-connected. The formula has been conjectured by Frank and Jordan in 1994. In the first lecture, I shall investigate the background, present some results on the previously solved connectivity augmentation cases, and exhibit examples motivating the complicated min-max formula of my paper.

Pages