Seminars and Colloquia by Series

Oblique derivative problems for elliptic equations

Series
PDE Seminar
Time
Tuesday, December 2, 2008 - 15:15 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Gary M. LiebermanIowa State University
The usual boundary condition adjoined to a second order elliptic equation is the Dirichlet problem, which prescribes the values of the solution on the boundary. In many applications, this is not the natural boundary condition. Instead, the value of some directional derivative is given at each point of the boundary. Such problems are usually considered a minor variation of the Dirichlet condition, but this talk will show that this problem has a life of its own. For example, if the direction changes continuously, then it is possible for the solution to be continuously differentiable up to a merely Lipschitz boundary. In addition, it's possible to get smooth solutions when the direction changes discontinuously as well.

Broken Lefschetz fibrations and Floer theoretical invariants

Series
Geometry Topology Seminar
Time
Monday, December 1, 2008 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Yanki LekiliMIT
A broken fibration is a map from a smooth 4-manifold to S^2 with isolated Lefschetz singularities and isolated fold singularities along circles. These structures provide a new framework for studying the topology of 4-manifolds and a new way of studying Floer theoretical invariants of low dimensional manifolds. In this talk, we will first talk about topological constructions of broken Lefschetz fibrations. Then, we will describe Perutz's 4-manifold invariants associated with broken fibrations and a TQFT-like structure corresponding to these invariants. The main goal of this talk is to sketch a program for relating these invariants to Ozsváth-Szabó invariants.

A general monotonicity concept and its applications in harmonic analysis and approximation theory

Series
Analysis Seminar
Time
Monday, December 1, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Sergey TikhonovICREA and CRM, Barcelona
In this talk we will discuss a generalization of monotone sequences/functions as well as of those of bounded variation. Some applications to various problems of analysis (the Lp-convergence of trigonometric series, the Boas-type problem for the Fourier transforms, the Jackson and Bernstein inequalities in approximation, etc.) will be considered.

A note on Olsen inequality

Series
Analysis Seminar
Time
Wednesday, November 26, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Yoshihiro SawanoGakushuin University, Japan

Please Note: Note time change.

Let I_\alpha be the fractional integral operator. The Olsen inequality, useful in certain PDEs, concerns multiplication operators and fractional integrals in the L^p-norm, or more generally, the Morrey norm. We strenghten this inequality from the one given by Olsen.

A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Series
ACO Student Seminar
Time
Wednesday, November 26, 2008 - 13:30 for 2 hours
Location
ISyE Executive Classroom
Speaker
Juan Pablo VielmaISyE, Georgia Tech
Two independent proofs of the polyhedrality of the split closure of Mixed Integer Linear Program have been previously presented. Unfortunately neither of these proofs is constructive. In this paper, we present a constructive version of this proof. We also show that split cuts dominate a family of inequalities introduced by Koppe and Weismantel.

High-order numerical methods for nonlinear PDEs

Series
PDE Seminar
Time
Tuesday, November 25, 2008 - 15:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Bojan PopovTexas A&M University

In this talk we will consider three different numerical methods for solving nonlinear PDEs:

  1. A class of Godunov-type second order schemes for nonlinear conservation laws, starting from the Nessyahu-Tadmor scheme;
  2. A class of L1 -based minimization methods for solving linear transport equations and stationary Hamilton- Jacobi equations;
  3. Entropy-viscosity methods for nonlinear conservation laws.

All of the above methods are based on high-order approximations of the corresponding nonlinear PDE and respect a weak form of an entropy condition. Theoretical results and numerical examples for the performance of each of the three methods will be presented.

Dunkl processes, eigenvalues of random matrices and the Weyl-chamber

Series
Stochastics Seminar
Time
Tuesday, November 25, 2008 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Nizar DemniUniversity of Bielefeld
We will introduce the Dunkl derivative as well as the Dunkl process and some of its properties. We will treat its radial part called the radial Dunkl process and light the connection to the eigenvalues of some matrix valued processes and to the so called Brownian motions in Weyl chambers. Some open problems will be discussed at the end.

Astala's conjecture on Hausdorff measure distortion under planar quasiconformal mappings

Series
Analysis Seminar
Time
Monday, November 24, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Ignacio Uriarte-tueroMichigan State University
In his celebrated paper on area distortion under planar quasiconformal mappings (Acta 1994), K. Astala proved that a compact set E of Hausdorff dimension d is mapped under a K-quasiconformal map f to a set fE of Hausdorff dimension at most d' = \frac{2Kd}{2+(K-1)d}, and he proved that this result is sharp. He conjectured (Question 4.4) that if the Hausdorff measure \mathcal{H}^d (E)=0, then \mathcal{H}^{d'} (fE)=0. This conjecture was known to be true if d'=0 (obvious), d'=2 (Ahlfors), and more recently d'=1 (Astala, Clop, Mateu, Orobitg and UT, Duke 2008.) The approach in the last mentioned paper does not generalize to other dimensions. Astala's conjecture was shown to be sharp (if it was true) in the class of all Hausdorff gauge functions in work of UT (IMRN, 2008). Finally, we (Lacey, Sawyer and UT) jointly proved completely Astala's conjecture in all dimensions. The ingredients of the proof come from Astala's original approach, geometric measure theory, and some new weighted norm inequalities for Calderon-Zygmund singular integral operators which cannot be deduced from the classical Muckenhoupt A_p theory. These results are intimately related to (not yet fully understood) removability problems for various classes of quasiregular maps. The talk will be self-contained.

On Cannon's conjecture

Series
Geometry Topology Seminar
Time
Monday, November 24, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Sa'ar HersonskyUniversity of Georgia
Cannon: "A f.g. negatively curved group with boundary homeomorphic to the round two sphere is Kleinian". We shall outline a combinatorial (complex analysis motivated) approach to this interesting conjecture (following Cannon, Cannon-Floyd-Parry). If time allows we will hint on another approach (Bonk-Kleiner) (as well as ours). The talk should be accessible to graduate students with solid background in: complex analysis, group theory and basic topology.

Pages