Seminars and Colloquia by Series

Solvability of some integro-differential equations with anomalous diffusion and transport

Series
Analysis Seminar
Time
Wednesday, February 24, 2021 - 14:00 for 1 hour (actually 50 minutes)
Location
https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09
Speaker
Vitali VougalterUniversity of Toronto

The work deals with the existence of solutions of an integro-differential equation in the case of the anomalous diffusion with the negative Laplace operator in a fractional power in the presence of the transport term. The proof of existence of solutions is based on a fixed point technique. Solvability conditions for elliptic operators without Fredholm property in unbounded domains are used. We discuss how the introduction of the transport term impacts the regularity of solutions.

https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09

Constructing minimally 3-connected graphs

Series
Graph Theory Seminar
Time
Tuesday, February 23, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Sandra KinganBrooklyn College, CUNY

A 3-connected graph is minimally 3-connected if removal of any edge destroys 3-connectivity. We present an algorithm for constructing minimally 3-connected graphs based on the results in (Dawes, JCTB 40, 159-168, 1986) using two operations: adding an edge between non-adjacent vertices and splitting a vertex of degree at least 4. To test sets of vertices and edges for 3-compatibility, which depends on the cycles of the graph, we develop a method for obtaining the cycles of $G'$ from the cycles of $G$, where $G'$ is obtained from $G$ by one of the two operations above.  We eliminate isomorphic duplicates using certificates generated by McKay's isomorphism checker nauty. The algorithm consecutively constructs the non-isomorphic minimally 3-connected graphs with $n$ vertices and $m$ edges from the non-isomorphic minimally 3-connected graphs with $n-1$ vertices and $m-2$ edges, $n-1$ vertices and $m-3$ edges, and $n-2$ vertices and $m-3$ edges. In this talk I will focus primarily on the theorems behind the algorithm. This is joint work with Joao Costalonga and Robert Kingan.

Julia sets with Ahlfors-regular conformal dimension one by InSung Park

Series
Geometry Topology Seminar
Time
Monday, February 22, 2021 - 14:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
InSung ParkIndiana University Bloomington

Please Note: Office hours will be held 3-4pm EST.

Complex dynamics is the study of dynamical systems defined by iterating rational maps on the Riemann sphere. For a rational map f, the Julia set Jf  is a beautiful fractal defined as the repeller of the dynamics of f. Fractal invariants of Julia sets, such as Hausdorff dimensions, have information about the complexity of the dynamics of rational maps. Ahlfors-regular conformal dimension, abbreviated by ARconfdim, is the infimum of the Hausdorff dimension in a quasi-symmetric class of Ahlfors-regular metric spaces. The ARconfdim is an important quantity especially in geometric group theory because a natural metric, called a visual metric, on the boundary of any Gromov hyperbolic group is determined up to quasi-symmetry. In the spirit of Sullivan's dictionary, we can use ARconfdim to understand the dynamics of rational maps as well. In this talk, we show that the Julia set of a post-critically finite hyperbolic rational map f has ARconfdim 1 if and only if there is an f-invariant graph G containing the post-critical set such that the dynamics restricted to G has topological entropy zero.  

The minimum degree of minimal Ramsey graphs for cliques

Series
Combinatorics Seminar
Time
Friday, February 19, 2021 - 15:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke
Speaker
Anurag BishnoiTU Delft

We prove a new upper bound of $s_r(K_k) = O(k^5 r^{5/2})$ on the Ramsey parameter $s_r(K_k)$ introduced by Burr, Erd\H{o}s and Lov\'{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ contains a monochromatic $K_k$, whereas no proper subgraph of $G$ has this property. This improves the previous upper bound of $s_r(K_k) = O(k^6 r^3)$ proved by Fox et al. The construction used in our proof relies on a group theoretic model of generalised quadrangles introduced by Kantor in 1980.

Talk based on https://arxiv.org/abs/2008.02474

Symplectic Geometry of Anosov Flows in Dimension 3 and Bi-Contact Topology

Series
CDSNS Colloquium
Time
Friday, February 19, 2021 - 13:00 for 1 hour (actually 50 minutes)
Location
Zoom (see add'l notes for link)
Speaker
Surena HozooriGeorgia Tech

Please Note: Link: https://zoom.us/j/97732215148?pwd=Z0FBNXNFSy9mRUx3UVk4alE4MlRHdz09

We give a purely contact and symplectic geometric characterization of Anosov flows in dimension 3 and set up a framework to use tools from contact and symplectic geometry and topology in the study of questions about Anosov dynamics. If time permits, we will discuss a characterization of Anosovity based on Reeb flows and its consequences.

Mathematical modeling of the COVID-19 pandemic: an outsider's perspective

Series
School of Mathematics Colloquium
Time
Thursday, February 18, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
https://us02web.zoom.us/j/87011170680?pwd=ektPOWtkN1U0TW5ETFcrVDNTL1V1QT09
Speaker
Wesley PegdenCarnegie Mellon University

In this talk we will discuss epidemic modeling in the context of COVID-19.  We will review the basics of classical epidemic models, and present joint work with Maria Chikina on the use of age-targeted strategies in the context of a COVID-19-like epidemic.  We will also discuss the broader roles epidemic modeling has played over the past year, and the limitations it as presented as a primary lens through which to understand the pandemic.

Fractional chromatic number of graphs of bounded maximum degree

Series
Graph Theory Seminar
Time
Tuesday, February 16, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Zdeněk DvořákCharles University

By the well-known theorem of Brooks, every graph of maximum degree Δ ≥ 3 and clique number at most Δ has chromatic number at most Delta. It is natural to ask (and is the subject of a conjecture of Borodin and Kostochka) whether this bound can be improved for graphs of clique number at most Δ - 1. While there has been little progress on this conjecture, there is a number of interesting results on the analogous question for the fractional chromatic number. We will report on some of them, including a result by myself Bernard Lidický and Luke Postle that except for a finite number of counterexamples, every connected subcubic triangle-free graph has fractional chromatic number at most 11/4.

Extremal stationary values for random digraphs

Series
Combinatorics Seminar
Time
Friday, February 12, 2021 - 15:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke
Speaker
Guillem PerarnauUPC Barcelona

In this talk, we will discuss the minimum positive value of the stationary distribution of a random walk on a directed random graph with given degrees. While for undirected graphs the stationary distribution is simply determined by the degrees, the graph geometry plays a major role in the directed case. Understanding typical stationary values is key to determining the mixing time of the walk, as shown by Bordenave, Caputo, and Salez. However, typical results provide no information on the minimum value, which is important for many applications. Recently, Caputo and Quattropani showed that the stationary distribution exhibits logarithmic fluctuations provided that the minimum degree is at least 2. In this talk, we show that dropping the minimum degree condition may yield polynomially smaller stationary values of the form n^{-(1+C+o(1))}, for a constant C determined by the degree distribution. In particular, C is the combination of two factors: (1) the contribution of atypically thin in-neighborhoods, controlled by subcritical branching processes; and (2) the contribution of atypically "light" trajectories, controlled by large deviation rate functions. As a by-product of our proof, we also determine the hitting and cover time in random digraphs. This is joint work with Xing Shi Cai.

Closed Geodesics on Surfaces without Conjugate Points

Series
CDSNS Colloquium
Time
Friday, February 12, 2021 - 13:00 for 1 hour (actually 50 minutes)
Location
Zoom (see add'l notes for link)
Speaker
Khadim WarIMPA

Please Note: Zoom link: https://zoom.us/j/96065531265?pwd=aW5qZW8vUUt3bGRlN29FS0FFVnc1QT09

We obtain Margulis-type asymptotic estimates for the number of free homotopy classes of closed geodesics on certain manifolds without conjugate points. Our results cover all compact surfaces of genus at least 2 without conjugate points. This is based on a join work with Vaughn Climenhaga and Gerhard Knieper.

Comparison between SOS and PSD via an algebraic quantity

Series
Student Algebraic Geometry Seminar
Time
Friday, February 12, 2021 - 09:00 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Jaewoo JungGeorgia Tech

Please Note: URL: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1612989014268?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Even though it is not easy to determine global non-negativity of a polynomial, if the polynomial can be written as a sum of squares(SOS), we certainly see that it must be non-negative(PSD). Representability of polynomials in terms of sums of squares is a good certification for global non-negativity in the sense that any non-negative polynomials is just a sum of squares in some cases. However, there are some non-negative polynomials which cannot be written as sum of squares in general. So, one can ask about when the set of sums of squares is same as the set of non-negative polynomials or describing gap between set of sums of squares and non-negative polynomials if they are different.

In this talk, we will introduce an algebraic invariant (of variety) which can tell us when the two sets are same (or not). Moreover, we will discuss about cases that we can exactly describe structural gaps between the two sets.

 

URL: Microsoft Teams

Pages