Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

The four color theorem states that each bridgeless trivalent planar graph has a proper 4-face coloring. It can be generalized to certain types of CW complexes of any closed surface for any number of colors, i.e., one looks for a coloring of the 2-cells (faces) of the complex with m colors so that whenever two 2-cells are adjacent to a 1-cell (edge), they are labeled different colors.

Series
Time
for
Location
Speaker
Organizer

It is an important and rather difficult problem in low dimensional topology to determine which rational homology 3-spheres bound smooth rational homology 4-balls. This is largely open even in the case of Brieskorn spheres—a special class of Seifert fibered spaces. In this talk, we will focus on symplectic version of this question, and (almost) determine when a small Seifert fibered space admits a symplectic rational homology ball filling.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

We begin with a survey of some Floer-theoretic knot concordance and homology cobordism invariants. Building on these ideas, we describe a new family of homology cobordism invariants and give a new proof that there are no 2-torsion elements with Rokhlin invariant 1. This is joint work in progress with Irving Dai, Matt Stoffregen, and Linh Truong.

Series
Time
for
Location
Speaker
Organizer

The Poincaré metric on the unit disc $\mathbb{D} \subset \mathbb{C}$, known for its invariance under all biholomorphisms (bijective holomorphic maps) of $\mathbb{D}$, is one of the most fundamental Riemannian metrics in differential geometry.

Series
Time
for
Location
Speaker
Organizer

We present a novel example of a Lorentzian manifold-with-boundary featuring a dramatic degeneracy in its deterministic and causal properties known as “causal bubbles” along its boundary. These issues arise because the regularity of the Lorentzian metric is below Lipschitz and fit within the larger framework of low regularity Lorentzian geometry. Although manifolds with causal bubbles were recently introduced in 2012 as a mathematical curiosity, our example comes from studying the fundamental equations of fluid mechanics and shock singularities which arise therein.

Series
Time
for
Location
Speaker
Organizer

We revisit the classical problem of constructing a developable surface along a given Frenet curve $\gamma$ in space. First, we generalize a well-known formula, introduced in the literature by Sadowsky in 1930, for the Willmore energy of the rectifying developable of $\gamma$ to any (infinitely narrow) flat ribbon along the same curve. Then we apply the direct method of the calculus of variations to show the existence of a flat ribbon along $\gamma$ having minimal bending energy. Joint work with Simon Blatt.

Series
Time
for
Location
Speaker
Organizer

In 1976, Thurston decidedly showed that symplectic geometry and Kähler geometry were strictly distinct by providing the first example of a compact symplectic manifold which is not symplectomorphic to any Kähler manifold. Since this example, first studied by Kodaira, much work has been done in explicating the difference between algebraic manifolds such as affine and projective varieties, complex manifolds such as Stein and Kähler manifolds, and general symplectic manifolds.

Pages

Subscribe to RSS - Geometry and Topology