- You are here:
- GT Home
- Home
- Seminars and Colloquia Schedule

Series: CDSNS Colloquium

Using techniques from local bifurcation theory, we prove the existence of various types of temporally periodic solutions for damped wave equations, in higher dimensions. The emphasis is on understanding the role of external bifurcation parameters and symmetry, in generating the periodic motion. The work presented is joint with Brian Pigott

Series: Geometry Topology Seminar

Although the Alexander polynomial does not satisfy an unoriented skein relation, Manolescu (2007) showed that there exists an unoriented skein exact triangle for knot Floer homology. In this talk, we will describe some developments in this direction since then, including a combinatorial proof using grid homology and extensions to the Petkova-Vertesi tangle Floer homology (joint work with Ina Petkova) and Zarev's bordered sutured Floer homology (joint work with Shea Vela-Vick).

Series: Geometry Topology Seminar

Now that the geometrization conjecture has been proven, and the virtual Haken conjecture has been proven, what is left in

3-manifold topology? One remaining topic is the computational complexity of geometric topology problems. How difficult is it to

distinguish the unknot? Or 3-manifolds from each other? The right approach to these questions is not just to consider quantitative

complexity, i.e., how much work they take for a computer; but also qualitative complexity, whether there are efficient algorithms with

one or another kind of help. I will discuss various results on this theme, such as that knottedness and unknottedness are both in NP; and

I will discuss high-dimensional questions for context.

3-manifold topology? One remaining topic is the computational complexity of geometric topology problems. How difficult is it to

distinguish the unknot? Or 3-manifolds from each other? The right approach to these questions is not just to consider quantitative

complexity, i.e., how much work they take for a computer; but also qualitative complexity, whether there are efficient algorithms with

one or another kind of help. I will discuss various results on this theme, such as that knottedness and unknottedness are both in NP; and

I will discuss high-dimensional questions for context.

Series: PDE Seminar

We prove the existence and the linear stability of Cantor families of small amplitude time quasi-periodic standing water wave solutions - i.e. periodic and even in the space variable x - of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem. The main difficulties are the quasi-linear nature of the gravity water waves equations and the fact that the linear frequencies grow just in a sublinear way at infinity. To overcome these problems, we first reduce the linearized operators obtained at each approximate quasi-periodic solution along the Nash-Moser iteration to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that are quasi-periodic in time. Then we apply a KAM reducibility scheme that requires very weak Melnikov non-resonance conditions (which lose derivatives both in time and space), which we are able to verify for most values of the depth parameter using degenerate KAM theory arguments. This is a joint work with P. Baldi, M. Berti and R. Montalto.

Series: Analysis Seminar

I will speak how to ``dualize'' certain martingale estimates related to the dyadic square function to obtain estimates on the Hamming and vice versa. As an application of this duality approach, I will illustrate how to dualize an estimate of Davis to improve a result of Naor--Schechtman on the real line. If time allows we will consider one more example where an improvement of Beckner's estimate will be given.

Wednesday, February 21, 2018 - 14:00 ,
Location: Skiles 006 ,
Kevin Kodrek ,
GaTech ,
Organizer: Anubhav Mukherjee

There are a number of ways to define the braid group. The traditional definition involves equivalence classes of braids, but it can also be defined in terms of mapping class groups, in terms of configuration spaces, or purely algebraically with an explicit presentation. My goal is to give an informal overview of this group and some of its subgroups, comparing and contrasting the various incarnations along the way.

Series: School of Mathematics Colloquium

A distinct covering system of congruences is a finite collection of arithmetic progressions $$a_i \bmod m_i, \qquad 1 < m_1 < m_2 < \cdots < m_k.$$Erdős asked whether the least modulus of a distinct covering system of congruences can be arbitrarily large. I will discuss my proof that minimum modulus is at most $10^{16}$, and recent joint work with Pace Nielsen, in which it is proven that every distinct covering system of congruences has a modulus divisible by either 2 or 3.

Friday, February 23, 2018 - 10:00 ,
Location: Skiles 006 ,
Tim Duff ,
Georgia Tech ,
tduff3@gatech.edu ,
Organizer: Kisun Lee

TBA

Friday, February 23, 2018 - 10:00 ,
Location: Skiles 006 ,
Tim Duff ,
Georgia Tech ,
tduff3@gatech.edu ,
Organizer: Kisun Lee

Polyhedral homotopy methods solve a sparse, square polynomial system by deforming it into a collection of square "binomial start systems." Computing a complete set of start systems is generally a difficult combinatorial problem, despite the successes of several software packages. On the other hand, computing a single start system is a special case of the matroid intersection problem, which may be solved by a simple combinatorial algorithm. I will give an introduction to polyhedral homotopy and the matroid intersection algorithm, with a view towards possible heuristics that may be useful for polynomial system solving in practice.

Friday, February 23, 2018 - 13:55 ,
Location: Skiles 269 ,
Prof. Justin Kakeu ,
Morehouse University ,
Organizer: Sung Ha Kang

We use a stochastic dynamic programming approach to address the following question: Can a homogenous resource extraction model (one without extraction costs, without new discoveries, and without technical progress) generate non-increasing resource prices? The traditional answer to that question contends that prices should exhibit an increasing trend as the exhaustible resource is being depleted over time (The Hotelling rule). In contrast, we will show that injecting concerns for temporal resolution of uncertainty in a resource extraction problem can generate a non-increasing trend in the resource price. Indeed, the expected rate of change of the price can become negative if the premium for temporal resolution of uncertainty is negative and outweighs both the positive discount rate and the short-run risk premium. Numerical examples are provided for illustration.

Friday, February 23, 2018 - 15:00 ,
Location: Skiles 271 ,
Jiaqi Yang ,
GT Math ,
Organizer: Jiaqi Yang

We will present a rigorous proof of non-existence of homotopically non-trivial invariant circles for standard map:x_{n+1}=x_n+y_{n+1}; y_{n+1}=y_n+\frac{k}{2\pi}\sin(2\pi x_n).This a work by J. Mather in 1984.

Series: Combinatorics Seminar

I will describe two new local limit theorems on the

Heisenberg group, and on an arbitrary connected, simply connected

nilpotent Lie group. The limit theorems admit general driving measures

and permit testing against test functions with an arbitrary

translation on the left and the right. The techniques introduced include

a rearrangement group action, the Gowers-Cauchy-Schwarz inequality, and

a Lindeberg replacement scheme which approximates the driving measure

with the corresponding heat kernel. These

results generalize earlier local limit theorems of Alexopoulos and

Breuillard, answering several open questions. The work on the

Heisenberg group is joint with Persi Diaconis.

Heisenberg group, and on an arbitrary connected, simply connected

nilpotent Lie group. The limit theorems admit general driving measures

and permit testing against test functions with an arbitrary

translation on the left and the right. The techniques introduced include

a rearrangement group action, the Gowers-Cauchy-Schwarz inequality, and

a Lindeberg replacement scheme which approximates the driving measure

with the corresponding heat kernel. These

results generalize earlier local limit theorems of Alexopoulos and

Breuillard, answering several open questions. The work on the

Heisenberg group is joint with Persi Diaconis.

Series: Other Talks

Degeneracy loci of morphisms between vector bundles have been used in a wide range of situations, including classical approaches to the Brill--Noether theory of special divisors on curves. I will describe recent developments in Schubert calculus, including K-theoretic formulas for degeneracy loci and their applications to K-classes of Brill--Noether loci. These recover the formulas of Eisenbud--Harris, Pirola, and Chan--López--Pflueger--Teixidor for Brill--Noether curves. This is joint work with Dave Anderson and Nicola Tarasca.

Saturday, February 24, 2018 - 09:30 ,
Location: Helen M. Aderhold Learning Center (ALC), Room 24 (60 Luckie St NW, Atlanta, GA 30303) ,
Wenjing Liao and others ,
GSU, Clemson,UGA, GT, Emory ,
Organizer: Sung Ha Kang

The Georgia Scientific Computing Symposium is a forum for professors,

postdocs, graduate students and other researchers in Georgia to meet in

an informal setting, to exchange ideas, and to highlight local

scientific computing research. The symposium has been held every year

since 2009 and is open to the entire research community. This year, the symposium will be held on Saturday, February 24, 2018, at Georgia State University. More information can be found at: https://math.gsu.edu/xye/public/gscs/gscs2018.html

postdocs, graduate students and other researchers in Georgia to meet in

an informal setting, to exchange ideas, and to highlight local

scientific computing research. The symposium has been held every year

since 2009 and is open to the entire research community. This year, the symposium will be held on Saturday, February 24, 2018, at Georgia State University. More information can be found at: https://math.gsu.edu/xye/public/gscs/gscs2018.html