Seminars and Colloquia Schedule

Cohen-Macaulayness of invariant rings is determined by inertia groups

Series
Algebra Seminar
Time
Monday, March 25, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ben Blum-SmithNYU

If a finite group $G$ acts on a Cohen-Macaulay ring $A$, and the order of $G$ is a unit in $A$, then the invariant ring $A^G$ is Cohen-Macaulay as well, by the Hochster-Eagon theorem. On the other hand, if the order of $G$ is not a unit in $A$ then the Cohen-Macaulayness of $A^G$ is a delicate question that has attracted research attention over the last several decades, with answers in several special cases but little general theory. In this talk we show that the statement that $A^G$ is Cohen-Macaulay is equivalent to a statement quantified over the inertia groups for the action of G$ on $A$ acting on strict henselizations of appropriate localizations of $A$. In a case of long-standing interest—a permutation group acting on a polynomial ring—we show how this can be applied to find an obstruction to Cohen-Macaulayness that allows us to completely characterize the permutation groups whose invariant ring is Cohen-Macaulay regardless of the ground field. This is joint work with Sophie Marques.

Joint GT-UGA Seminar at UGA - A spectral sequence from Khovanov homology to knot Floer homology

Series
Geometry Topology Seminar
Time
Monday, March 25, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Nathan DowlinDartmouth
Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.

Stochastic models for the transmission and establishment of HIV infection

Series
Mathematical Biology Seminar
Time
Wednesday, March 27, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dan CoombsUBC (visiting Emory)
The likelihood of HIV infection following risky contact is believed to be low. This suggests that the infection process is stochastic and governed by rare events. I will present mathematical branching process models of early infection and show how we have used them to gain insights into the duration of the undetectable phase of HIV infection, the likelihood of success of pre- and post-exposure prophylaxis, and the effects of prior infection with HSV-2. Although I will describe quite a bit of theory, I will try to keep giant and incomprehensible formulae to a minimum.

Energy minimization on the sphere.

Series
Analysis Seminar
Time
Wednesday, March 27, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dmitry BilykUniversity of Minnesota

Many problems of spherical discrete and metric geometry may be reformulated as energy minimization problems and require techniques that stem from harmonic analysis, potential theory, optimization etc. We shall discuss several such problems as well of applications of these ideas to combinatorial geometry, discrepancy theory, signal processing etc.

Iterative linear solvers and random matrices: new bounds for the block Gaussian sketch and project method

Series
Stochastics Seminar
Time
Wednesday, March 27, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebrovaUCLA

One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.

I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.

Iterative linear solvers and random matrices: new bounds for the block Gaussian sketch and project method.

Series
High Dimensional Seminar
Time
Wednesday, March 27, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebrovaUCLA

<br />

One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.
I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.

 

Remez inequalities for solutions of elliptic PDEs

Series
School of Mathematics Colloquium
Time
Thursday, March 28, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eugenia MalinnikovaNorwegian University of Science and Technology
The Remez inequality for polynomials quantifies the way the maximum of a polynomial over an interval is controlled by its maximum over a subset of positive measure. The coefficient in the inequality depends on the degree of the polynomial; the result also holds in higher dimensions. We give a version of the Remez inequality for solutions of second order linear elliptic PDEs and their gradients. In this context, the degree of a polynomial is replaced by the Almgren frequency of a solution. We discuss other results on quantitative unique continuation for solutions of elliptic PDEs and their gradients and give some applications for the estimates of eigenfunctions for the Laplace-Beltrami operator. The talk is based on a joint work with A. Logunov.

On the number of cliques in graphs with a forbidden clique minor

Series
Graph Theory Seminar
Time
Thursday, March 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fan WeiStanford University
Reed and Wood and independently Norine, Seymour, Thomas, and Wollan showed that for each $t$ there is $c(t)$ such that every graph on $n$ vertices with no $K_t$ minor has at most $c(t)n$ cliques. Wood asked in 2007 if $c(t)

Constructive regularization of the random matrix norm

Series
Stochastics Seminar
Time
Thursday, March 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebovaMathematics, UCLA

I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.
Im am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.

Long-range order in random colorings and random graph homomorphisms in high dimensions

Series
Combinatorics Seminar
Time
Friday, March 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yinon SpinkaUniversity of British Columbia, Vancouver, Canada

Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.

Gattaca

Series
Algebra Seminar
Time
Saturday, March 30, 2019 - 14:00 for 8 hours (full day)
Location
Atlanta
Speaker
Georgia Tech Tropical Arithmetic and Combinatorial Algebraic-geometryGeorgia Institute of Technology

This is a two day conference (March 30-31) to be held at Georgia Tech on algebraic geometry and related areas. We will have talks by Sam Payne, Eric Larson, Angelica Cueto, Rohini Ramadas, and Jennifer Balakrishnan. See https://sites.google.com/view/gattaca/home for more information.