Seminars and Colloquia Schedule

On the weak implies strong conjecture

Series
Algebra Seminar
Time
Monday, March 27, 2023 - 10:20 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Thomas PolstraUniversity of Alabama

A fundamental conjecture of tight closure theory is every weakly F-regular ring is strongly F -regular. There has been incremental progress on this conjecture since the inception of tight closure. Most notably, the conjecture has been resolved for rings graded over a field by Lyubeznik and Smith. Otherwise, known progress around the conjecture have required assumptions on the ring that are akin to being Gorenstein. We extend known cases by proving the equivalence of F -regularity classes for rings whose anti-canonical algebra is Noetherian on the punctured spectrum. The anti-canonical algebra being Noetherian for a strongly F -regular ring is conjectured to be a vacuous assumption. This talk is based on joint work with Ian Aberbach and Craig Huneke.

A comparison between SL_n spider categories

Series
Geometry Topology Seminar
Time
Monday, March 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anup PoudelOhio State

In this talk, we will explore and make comparisons between various models that exist for spherical tensor categories associated to the category of representations of the quantum group U_q(SL_n). In particular, we will discuss the combinatorial model of Murakami-Ohtsuki-Yamada (MOY), the n-valent ribbon model of Sikora and the trivalent spider category of Cautis-Kamnitzer-Morrison (CKM). We conclude by showing that the full subcategory of the spider category from CKM, whose objects are monoidally generated by the standard representation and its dual, is equivalent as a spherical braided category to Sikora's quotient category. This proves a conjecture of Le and Sikora and also answers a question from Morrison's Ph.D. thesis.

Application of NNLCIs to the scattering of electromagnetic waves around curved PECs

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347
Speaker
Hwi LeeGeorgia Tech Math

In this talk, we demonstrate the application of Neural Networks with Locally Converging Inputs (NNLCI) to simulate the scattering of electromagnetic waves around two-dimensional perfect electric conductors (PEC). The NNLCIs are designed to output high-fidelity numerical solutions from local patches of two coarse grid numerical solutions obtained by a convergent numerical scheme. Once trained, the NNLCIs can play the role of a computational cost-saving tool for repetitive computations with varying parameters. To generate the inputs to our NNLCI, we design on uniform rectangular grids a second-order accurate finite difference scheme that can handle curved PEC boundaries systematically. More specifically, our numerical scheme is based on the Back and Forth Error Compensation and Correction method together with the construction of ghost points via a level set framework, PDE-based extension technique, and what we term guest values. We illustrate the performance of our NNLCI subject to variations in incident waves as well as PEC boundary geometries.

Supersaturation of subgraphs

Series
Graph Theory Seminar
Time
Tuesday, March 28, 2023 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tao JiangMiami University

Many results in extremal graph theory build on supersaturation of subgraphs. In other words, when a graph is dense enough, it contains many copies of a certain subgraph and these copies are then used as building blocks to force another subgraph of interest. Recently more success is found within this approach where one utilizes not only the large number of copies of a certain subgraph but a well-distributed collection of them to force the desired subgraph. We discuss some recent progress of this nature. The talk is built on joint work with Sean Longbrake, and with Sean Longbrake and Jie Ma.

A new conjecture to unify Fourier restriction and Bochner-Riesz

Series
Analysis Seminar
Time
Wednesday, March 29, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruixiang ZhangUC Berkeley

The Fourier restriction conjecture and the Bochner-Riesz conjecture ask for Lebesgue space mapping properties of certain oscillatory integral operators. They both are central in harmonic analysis, are open in dimensions $\geq 3$, and notably have the same conjectured exponents. In the 1970s, H\"{o}rmander asked if a more general class of operators (known as H\"{o}rmander type operators) all satisfy the same $L^p$-boundedness as in the above two conjectures. A positive answer to H\"{o}rmander's question would resolve the above two conjectures and have more applications such as in the manifold setting. Unfortunately H\"{o}rmander's question is known to fail in all dimensions $\geq 3$ by the work of Bourgain and many others. It continues to fail in all dimensions $\geq 3$ even if one adds a ``positive curvature'' assumption which one does have in restriction and Bochner-Riesz settings. Bourgain showed that in dimension $3$ one always has the failure unless a derivative condition is satisfied everywhere. Joint with Shaoming Guo and Hong Wang, we generalize this condition to arbitrary dimension and call it ``Bourgain's condition''. We unify Fourier restriction and Bochner-Riesz by conjecturing that any H\"{o}rmander type operator satisfying Bourgain's condition should have the same $L^p$-boundedness as in those two conjectures. As evidence, we prove that the failure of Bourgain's condition immediately implies the failure of such an $L^p$-boundedness in every dimension. We also prove that current techniques on the two conjectures apply equally well in our conjecture and make some progress on our conjecture that consequently improves the two conjectures in higher dimensions. I will talk about some history and some interesting components in our proof.

The belt trick and spin groups

Series
Geometry Topology Student Seminar
Time
Wednesday, March 29, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sean EliGeorgia Tech

This talk includes an interactive prop demonstration. There exist non-trivial loops in SO(3) (the familiar group of real life rotations) which can be visualized with Dirac's belt trick. Although the belt trick offers a vivid picture of a loop in SO(3), a belt is not a proof, so we will prove SO(n) is not simply connected (n>2), and find its universal covering group Spin(n) (n >2). Along the way we'll introduce the Clifford algebra and study its basic properties. 

Infinite dimensional invariant tori for the 1d NLS Equation.

Series
Math Physics Seminar
Time
Thursday, March 30, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 (different from usual)
Speaker
Livia CorsiUniversity of Rome 3

In the study of close to integrable Hamiltonian PDEs, a fundamental question is to understand the behavior of  ''typical'' solutions. With this in mind it is natural to study the persistence of almost-periodic solutions and infinite dimensional invariant tori, which are indeed typical in the integrable case. Up to now almost all results in the literature deal with very regular solutions for model PDEs with external parameters giving a large modulation. In this talk I shall discuss a new result constructing Gevrey solutions for models with a weak parameter modulation. 

This is a joint work with G.Gentile and M.Procesi.

Spectral properties of topological insulators with general edges

Series
Math Physics Seminar
Time
Thursday, March 30, 2023 - 13:20 for 1 hour (actually 50 minutes)
Location
Skiles Room 006
Speaker
Xiaowen ZhuUniversity of Washington

Topological insulators are materials that exhibit unique physical properties due to their non-trivial topological order. One of the most notable consequences of this order is the presence of protected edge states as well as closure of bulk spectral gaps, which is known as the bulk-edge correspondence. In this talk, I will discuss the mathematical description of topological insulators and their related spectral properties. The presentation assumes only basic knowledge of spectral theory, and will begin with an overview of Floquet theory, Bloch bundles, and the Chern number. We will then examine the bulk-edge correspondence in topological insulators before delving into our research on closure of bulk spectral gaps for topological insulators with general edges. This talk is based on a joint work with Alexis Drouot.

The sample complexity of learning transport maps

Series
Stochastics Seminar
Time
Thursday, March 30, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Philippe RigolletMassachusetts Institute of Technology

Optimal transport has recently found applications in a variety of fields ranging from graphics to biology. Underlying these applications is a new statistical paradigm where the goal is to couple multiple data sources. It gives rise to interesting new questions ranging from the design of estimators to minimax rates of convergence. I will review several applications where the central problem consists in estimating transport maps. After studying optimal transport as a potential solution, I will argue that its entropic version is a good alternative model. In particular, it completely escapes the curse of dimensionality that plagues statistical optimal transport.

Stability for symmetric groups, and beyond

Series
Colloquia
Time
Friday, March 31, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Weiqiang WangUniversity of Virginia

Special date and special room

We shall explain a simple remarkable stability phenomenon regarding the centers of the group algebras of the symmetric groups in n letters, as n goes to infinity. The same type of stability phenomenon extends to a wide class of finite groups including wreath products and finite general linear groups. Such stability has connections and applications to the cohomology rings of Hilbert schemes of n points on algebraic surfaces.

Anderson Localization in dimension two for singular noise, part five

Series
Mathematical Physics and Analysis Working Seminar
Time
Friday, March 31, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and https://uci.zoom.us/j/93130067385
Speaker
Omar HurtadoUC Irvine

We will finish our proof of the key lemma for the probabilistic unique continuation principle used in Ding-Smart. We will also briefly recall enough of the theory of martingales to clarify a use of Azuma's inequality, and the basic definitions of \epsilon-nets and \epsilon-packings required to formulate the basic volumetric bound for these in e.g. the unit sphere, before using these to complete the proof.

Which L_p norm is the fairest? Approximations for fair facility location across all "p"

Series
ACO Student Seminar
Time
Friday, March 31, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jai MoondraGeorgia Tech CS

The classic facility location problem seeks to open a set of facilities to minimize the cost of opening the chosen facilities and the total cost of connecting all the clients to their nearby open facilities. Such an objective may induce an unequal cost over certain socioeconomic groups of clients (i.e., total distance traveled by clients in such a group). This is important when planning the location of socially relevant facilities such as emergency rooms and grocery stores. In this work, we consider a fair version of the problem by minimizing the L_p-norm of the total distance traveled by clients across different socioeconomic groups and the cost of opening facilities, to penalize high access costs to open facilities across r groups of clients. This generalizes classic facility location (p = 1) and the minimization of the maximum total distance traveled by clients in any group (p = infinity). However, it is often unclear how to select a specific "p" to model the cost of unfairness. To get around this, we show the existence of a small portfolio of at most (log2r + 1) solutions for r (disjoint) client groups, where for any L_p-norm, at least one of the solutions is a constant-factor approximation with respect to any L_p-norm. We also show that such a dependence on r is necessary by showing the existence of instances where at least ~ sqrt(log2r) solutions are required in such a portfolio. Moreover, we give efficient algorithms to find such a portfolio of solutions. Additionally, We introduce the notion of refinement across the solutions in the portfolio. This property ensures that once a facility is closed in one of the solutions, all clients assigned to it are reassigned to a single facility and not split across open facilities. We give poly(exp(sqrt(r))-approximation for refinement in general metrics and O(log r)-approximation for the line and tree metrics. This is joint work with Swati Gupta and Mohit Singh.

Lefschetz Fibrations and Exotic 4-Manifolds III

Series
Geometry Topology Seminar
Time
Friday, March 31, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Nur SaglamGeorgia Tech

Lefschetz fibrations are very useful in the sense that they have one-one correspondence with the relations in the Mapping Class Groups and they can be used to construct exotic (homeomorphic but not diffeomorphic) 4-manifolds. In this series of talks, we will first introduce Lefschetz fibrations and Mapping Class Groups and give examples. Then, we will dive more into 4-manifold world. More specifically, we will talk about the history of  exotic 4-manifolds and we will define the nice tools used to construct exotic 4-manifolds, like symplectic normal connect sum, Rational Blow-Down, Luttinger Surgery, Branch Covers, and Knot Surgery. Finally, we will provide various constructions of exotic 4-manifolds.

Low degree permutation statistics

Series
Combinatorics Seminar
Time
Friday, March 31, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Zachary HamakerUniversity of Florida

There is a natural notion of `degree’ for functions from the symmetric group to the complex numbers, which translates roughly to saying the function counts certain weighted patterns. Low degree class functions have a classical interpretation in terms of the cycle structure of permutations. I will explain how to translate between pattern counts to cycle structure using a novel symmetric function identity analogous to the Murnaghan-Nakayama identity. This relationship allows one to lift many probabilistic properties of permutation statistics to certain non-uniform distributions, and I will present some results in this direction. This is joint work with Brendon Rhoades.