TBA by Joris Roos
- Series
- Analysis Seminar
- Time
- Wednesday, April 16, 2025 - 14:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Joris Roos – University of Massachusetts Lowell – joris_roos@uml.edu
TBD
Please Note: Zoom link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09
TBA
The work deals with the existence of solutions of an integro-differential equation in the case of the normal diffusion and the influx/efflux term proportional to the Dirac delta function in the presence of the drift term. The proof of the existence of solutions relies on a fixed point technique. We use the solvability conditions for the non-Fredholm elliptic operators in unbounded domains and discuss how the introduction of the transport term influences the regularity of the solutions.
https://gatech.zoom.us/j/94295986362?pwd=8euEJ3ojkWl5c3Y3hLyXTiKBts3Rrq.1
While the research on water waves modeled by Euler's equations has a long history, mainly in the last two decades traveling periodic rotational waves have been constructed rigorously by means of bifurcation theorems. After introducing the problem, I will present a new reformulation in two dimensions in the pure-gravity case, where the problem is equivalently cast into the form "identity plus compact," which is amenable to Rabinowitz's global bifurcation theorem. The main advantages (and the novelty) of this new reformulation are that no simplifying restrictions on the geometry of the surface profile and no simplifying assumptions on the vorticity distribution (and thus no assumptions regarding the absence of stagnation points or critical layers) have to be made. Within the scope of this new formulation, global families of solutions, bifurcating from laminar flows with a flat surface, are constructed. Moreover, I will discuss the possible alternatives for the global set of solutions, as well as their nodal properties. This is joint work with Erik Wahlén.
The Ceresa cycle and the Gross—Kudla—Schoen modified diagonal cycle are algebraic $1$-cycles associated to a smooth algebraic curve. They are algebraically trivial for a hyperelliptic curve and non-trivial for a very general complex curve of genus $>2$. Given an algebraic curve, it is an interesting question to study whether the Ceresa and GKS cycles associated to it are rationally or algebraically trivial. In this talk, I will discuss some methods and tools to study this problem