Seminars and Colloquia by Series

Wednesday, April 3, 2019 - 11:15 , Location: Skiles 006 , Alex Blumenthal , Universith of Maryland , Organizer: Rafael de la Llave

It is anticipated that the invariant statistics of many of smooth dynamical systems with a `chaotic’ asymptotic character are given by invariant measures with the SRB property- a geometric property of invariant measures which, roughly, means that the invariant measure is smooth along unstable directions. However, actually verifying the existence of SRB measures for concrete systems is extremely challenging: indeed, SRB measures need not exist, even for systems exhibiting asymptotic hyperbolicity (e.g., the figure eight attractor).

The study of asymptotic properties for dynamical systems in the presence of noise is considerably simpler. One manifestation of this principle is the theorem of Ledrappier and Young ’89, where it was proved that under very mild conditions, stationary measures for a random dynamical system with a positive Lyapunov exponent are automatically random SRB measures (that is, satisfy the random analogue of the SRB property). I will talk today about a new proof of this result in a joint work with Lai-Sang Young. This new proof has the benefit of being (1) conceptually lucid and to-the-point (the original proof is somewhat indirect) and (2) potentially easily adapted to more general settings, e.g., to appropriate infinite-dimensional random dynamics, such as time-t solutions to certain classes SPDE (this generalization is an ongoing work, joint with LSY).

Series: PDE Seminar
Tuesday, April 2, 2019 - 15:00 , Location: skiles 006 , Professor Yan Guo , Brown University , Yan_Guo@Brown.edu , Organizer: Xukai Yan

In a joint work with Sameer Iyer, the validity of steady Prandtl layer expansion is established in a channel. Our result covers the celebrated Blasius boundary layer profile, which is based on uniform quotient estimates for the derivative Navier-Stokes equations, as well as a positivity estimate at the flow entrance.

Tuesday, April 2, 2019 - 11:00 , Location: Skiles 006 , John Baez , UC Riverside , baez@math.ucr.edu , Organizer: Matt Baker

A classical particle moving in an inverse square central force, like a planet in the gravitational field of the Sun, moves in orbits that do not precess. This lack of precession, special to the inverse square force, indicates the presence of extra conserved quantities beyond the obvious ones. Thanks to Noether's theorem, these indicate the presence of extra symmetries. It turns out that not only rotations in 3 dimensions, but also in 4 dimensions, act as symmetries of this system. These extra symmetries are also present in the quantum version of the problem, where they explain some surprising features of the hydrogen atom. The quest to fully understand these symmetries leads to some fascinating mathematical adventures.

Monday, April 1, 2019 - 14:00 , Location: Skiles 006 , Ahmad Issa , University of Texas, Austin , Organizer: Jennifer Hom

Which 3-manifolds smoothly embed in the 4-sphere? This seemingly simple question turns out to be rather subtle. Using Donaldson's theorem, we derive strong restrictions to embedding a Seifert fibered space over an orientable base surface, which in particular gives a complete classification when e > k/2, where k is the number of exceptional fibers and e is the normalized central weight. Our results point towards a couple of interesting conjectures which I'll discuss. This is joint work with Duncan McCoy.

Monday, April 1, 2019 - 13:55 , Location: Skiles 005 , Prof. Tomoki Ohsawa , UT Dallas , tomoki@utdallas.edu , Organizer: Molei Tao

We present a Hamiltonian formulation of the dynamics of the ``shape'' of N point vortices on the plane and the sphere: For example, if N=3, it is the dynamics of the shape of the triangle formed by three point vortices, regardless of the position and orientation of the triangle on the plane/sphere.For the planar case, reducing the basic equations of point vortex dynamics by the special Euclidean group SE(2) yields a Lie-Poisson equation for relative configurations of the vortices. Particularly, we show that the shape dynamics is periodic in certain cases. We extend the approach to the spherical case by first lifting the dynamics from the two-sphere to C^2 and then performing reductions by symmetries.

Monday, April 1, 2019 - 12:50 , Location: Skiles 005 , Maria Angelica Cueto , Ohio State University , cueto.5@osu.edu , Organizer: Yoav Len

The classical statement that there are 27 lines on every smooth cubic surface in $\mathbb{P}^3$ fails to hold under tropicalization: a tropical cubic surface in $\mathbb{TP}^3$ often contains infinitely many tropical lines. This pathology can be corrected by reembedding the cubic surface in $\mathbb{P}^{44}$ via the anticanonical bundle.

Under this tropicalization, the 27 classical lines become an arrangement of metric trees in the boundary of the tropical cubic surface in $\mathbb{TP}^{44}$. A remarkable fact is that this arrangement completely determines the combinatorial structure of the corresponding tropical cubic surface. In this talk, we will describe their metric and topological type as we move along the moduli space of tropical cubic surfaces. Time permitting, we will discuss the matroid that emerges from their tropical convex hull.

This is joint work with Anand Deopurkar.

Monday, April 1, 2019 - 12:45 , Location: Skiles 006 , Ahmad Issa , University of Texas, Austin , Organizer: Jennifer Hom

A link in the 3-sphere is doubly slice if it is the cross-section of an unknotted 2-sphere in the 4-sphere. The double branched cover of a doubly slice link is a 3-manifold which embeds in the 4-sphere. For doubly slice Montesinos links, this produces embeddings of Seifert fibered spaces in S^4. In this pre-talk, I'll discuss a construction and an obstruction to being doubly slice.

Monday, April 1, 2019 - 11:15 , Location: Skiles 005 , Ben Webb , BYU , bwebb@math.byu.edu , Organizer: Leonid A. Bunimovich

One of the characteristics observed in real networks is that, as a network's topology evolves so does the network's ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. We introduce a model of network growth based on this notion of specialization and show that as a network is specialized its topology becomes increasingly modular, hierarchical, and sparser, each of which are properties observed in real networks. This model is also highly flexible in that a network can be specialized over any subset of its components. By selecting these components in various ways we find that a network's topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity, power-law like degree distributions and clustering coefficients. This growth model also maintains the basic spectral properties of a network, i.e. the eigenvalues and eigenvectors associated with the network's adjacency network. This allows us in turn to show that a network maintains certain dynamic properties as the network's topology becomes increasingly complex due to specialization.

Saturday, March 30, 2019 - 14:00 , Location: Atlanta , Georgia Tech Tropical Arithmetic and Combinatorial Algebraic-geometry , Georgia Institute of Technology , Organizer: Yoav Len

This is a two day conference (March 30-31) to be held at Georgia Tech on algebraic geometry and related areas. We will have talks by Sam Payne, Eric Larson, Angelica Cueto, Rohini Ramadas, and Jennifer Balakrishnan. See https://sites.google.com/view/gattaca/home for more information.

Friday, March 29, 2019 - 15:05 , Location: Skiles 005 , Yinon Spinka , University of British Columbia, Vancouver, Canada , Organizer: Prasad Tetali

Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.

Pages