Reproducing Pairs and Gabor Systems
- Series
- Dissertation Defense
- Time
- Tuesday, July 8, 2025 - 11:00 for 1 hour (actually 50 minutes)
- Location
- ONLINE
- Speaker
- Logan Hart – Georgia Institute of Technology – lhart31@gatech.edu
We first investigate reproducing pairs in Hilbert spaces, with a focus on the discrete case. Reproducing pairs generalize frames and consist of two sequences $\Psi$ and $\Phi$, along with a bounded invertible operator $S_{\Psi,\Phi}$. The work examines sequences that are overcomplete by one element—that is, they become exact upon removal of a single element. A central result shows that if such a sequence admits a reproducing partner, the resulting exact subsequence must form a Schauder basis. This implies that systems like the Gaussian Gabor system at critical density, which lacks a Schauder basis, cannot have a reproducing partner. The result is further generalized to sequences overcomplete by finitely many elements.
Next, we introduce exponential reproducing pairs, where the sequences are weighted exponentials. The associated operator $S_{g\gamma}$ acts as a multiplication operator, and necessary and sufficient conditions are established for when a pair $(g, \gamma)$ forms an exponential reproducing pair.
Lastly, by extending a 2012 result of Heil and Yoon, we develop a two-dimensional theory for weighted exponential systems. It characterizes when weighted double exponential systems are minimal and complete, and provides necessary and sufficient conditions for exactness of arbitrary weighted systems.
Zoom Link: https://gatech.zoom.us/j/93221716846