Organizational Meeting
- Series
- Student Algebraic Geometry Seminar
- Time
- Friday, August 28, 2020 - 09:00 for 1 hour (actually 50 minutes)
- Location
- Microsoft Teams Meeting
- Speaker
Please join using the following link: MS Teams meeting
Please join using the following link: MS Teams meeting
How can we recognize a map given certain combinatorial data? The Alexander method gives us the answer for self-homeomorphisms of finite-type surfaces. We can determine a homeomorphism of a surface (up to isotopy) based on how it acts on a finite number of curves. However, is there a way to apply this concept to recognize maps on other spaces? The answer is yes for a special class of maps, post-critically finite quadratic polynomials on the complex plane (Belk-Lanier-Margalit-Winarski).
In this talk, we will discuss Belk-Lanier-Margalit-Winarski’s methods, as well zome difficulties we face when trying to extend their methods to other settings.
An infinite-type surface is a surface whose fundamental group is not finitely generated. These surfaces are “big,” having either infinite genus or infinitely many punctures. Recently, it was shown that mapping class groups of these infinite-type surfaces have a wealth of subgroups; for example, there are infinitely many surfaces whose mapping class group contains every countable group as a subgroup. By extending a theorem for finite-type surfaces to the infinite-type case — the Nielsen realization problem — we give topological obstructions to continuous embeddings of topological groups, with a few interesting examples.
In the last twenty or so years, a rich theory has emerged concerning combinatorial problems on infinite graphs endowed with extra structure, such as a topology or a measure. It turns out that there is a close relationship between this theory and distributed computing, i.e., the area of computer science concerned with problems that can be solved efficiently by a decentralized network of processors. In this talk I will outline this relationship and present a number of applications.
I will compare and contrast a selection of popular equivalence relations on 4 manifolds, and explain some recent progress on classification results.
The speaker will hold online office hours from 3:00-4:00 pm for interested graduate students and postdocs.
Deep learning has achieved great success in recent years. One aspect overlooked by traditional deep-learning methods is uncertainty modeling, which can be very important in certain applications such as medical image classification and reinforcement learning. A standard way for uncertainty modeling is by adopting Bayesian inference. In this talk, I will share some of our recent work on scalable Bayesian inference by sampling, called optimal-transport sampling, motivated from the optimal-transport theory. Our framework formulates Bayesian sampling as optimizing a set of particles, overcoming some intrinsic issues of standard Bayesian sampling algorithms such as sampling efficiency and algorithm scalability. I will also describe how our sampling framework be applied to uncertainty and repulsive attention modeling in state-of-the-art natural-language-processing models.
Please Note: The live talk will be broadcast on Bluejeans: https://gatech.bluejeans.com/759112674
I will present a proof of Gauss's Law of Quadratic Reciprocity based on permutations and the mathematics of dealing cards.
The three-dimensional Poincare conjecture shows that any closed three-manifold other than the three-sphere has non-trivial fundamental group. A natural question is how to measure the non-triviality of such a group, and conjecturally this can be concretely realized by a non-trivial representation to SU(2). We will show that the fundamental groups of three-manifolds with incompressible tori admit non-trivial SU(2) representations. This is joint work with Juanita Pinzon-Caicedo and Raphael Zentner.
The speaker will hold online office hours from 3:15-4:15 pm for interested graduate students and postdocs.
In 1960, Furstenberg and Kesten introduced the problem of describing the asymptotic behavior of products of random matrices as the number of factors tends to infinity. Oseledets’ proved that such products, after normalization, converge almost surely. This theorem has wide-ranging applications to smooth ergodic theory and rigidity theory. It has been generalized to products of random operators on Banach spaces by Ruelle and others. I will explain a new infinite-dimensional generalization based on von Neumann algebra theory which accommodates continuous Lyapunov distribution. No knowledge of von Neumann algebras will be assumed. This is joint work with Ben Hayes (U. Virginia) and Yuqing Frank Lin (UT Austin, Ben-Gurion U.).