Seminars and Colloquia by Series

Some combinatorics of RNA branching

Series
Mathematical Biology Seminar
Time
Wednesday, September 4, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christine HeitschGeorgia Tech

Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology.  For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly.  However, recent results in geometric combinatorics (both theoretical and computational) yield new insights into the distribution of optimal branching configurations, and suggest new directions for improving prediction accuracy.

Positively Hyperbolic Varieties

Series
Algebra Seminar
Time
Tuesday, September 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

A multivariate complex polynomial is called stable if any line in any positive direction meets its hypersurface only at real points.  Stable polynomials have close relations to matroids and hyperbolic programming.  We will discuss a generalization of stability to algebraic varieties of codimension larger than one.  They are varieties which are hyperbolic with respect to the nonnegative Grassmannian, following the notion of hyperbolicity studied by Shamovich, Vinnikov, Kummer, and Vinzant. We show that their tropicalization and Chow polytopes have nice combinatorial structures related to braid arrangements and positroids, generalizing some results of Choe, Oxley, Sokal, Wagner, and Brändén on Newton polytopes and tropicalizations of stable polynomials. This is based on joint work with Felipe Rincón and Cynthia Vinzant.

Learning and Testing for Graphical Models

Series
ACO Student Seminar
Time
Friday, August 30, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Zongchen ChenCS, Georgia Tech

In this talk we introduce some machine learning problems in the setting of undirected graphical models, also known as spin systems. We take proper colorings as a representative example of a hard-constraint graphical model. The classic problem of sampling a proper coloring uniformly at random of a given graph has been well-studied. Here we consider two inverse problems: Given random colorings of an unknown graph G, can we recover the underlying graph G exactly? If we are also given a candidate graph H, can we tell if G=H? The former problem is known as structure learning in the machine learning field and the latter is called identity testing. We show the complexity of these problems in different range of parameters and compare these results with the corresponding decision and sampling problems. Finally, we give some results of the analogous problems for the Ising model, a typical soft-constraint model. Based on joint work with Ivona Bezakova, Antonio Blanca, Daniel Stefankovic and Eric Vigoda.

Stability and instability issues for kinetic gravitational systems

Series
Applied and Computational Mathematics Seminar
Time
Friday, August 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammed LemouUniversité de Rennes 1 et ENS de Rennes

Please Note: Special time

I will start by giving a short overview of the history around stability and instability issues in gravitational systems driven by kinetic equations. Conservations properties and  families of non-homogeneous steady states will be first presented. A well-know conjecture in both astrophysics and mathematics communities was that  "all steady states of the gravitational Vlasov-Poisson system which are decreasing functions of the energy, are non linearly stable up to space translations".  We explain why the traditional variational approaches are not sufficient to answer this conjecture. An alternative approach, inspired by astrophysics literature, will be then presented and quantitative stability inequalities will be shown, therefore solving the above conjecture for Vlasov-Poisson systems. This have been achieved by using a refined notion for the rearrangement of functions and Poincaré-like  functional inequalities. For other systems like the so-called Hamiltonian Mean Field (HMF), the decreasing property of the steady states is no more sufficient to guarantee their stability. An additional explicit criteria is needed, under which their non-linear stability is proved. This criteria is sharp as  non linear instabilities can be constructed if it is not satisfied.

Universality for the time constant in critical first-passage percolation

Series
Stochastics Seminar
Time
Thursday, August 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronGeorgia Tech

In first-passage percolation, we place i.i.d. nonnegative weights (t_e) on the edges of a graph and consider the induced weighted graph metric T(x,y). When the underlying graph is the two-dimensional square lattice, there is a phase transition in the model depending on the probability p that an edge weight equals zero: for p<1/2, the metric T(0,x) grows linearly in x, whereas for p>1/2, it remains stochastically bounded. The critical case occurs for p=1/2, where there are large but finite clusters of zero-weight edges. In this talk, I will review work with Wai-Kit Lam and Xuan Wang in which we determine the rate of growth for T(0,x) up to a constant factor for all critical distributions. Then I will explain recent work with Jack Hanson and Wai-Kit Lam in which we determine the "time constant" (leading order constant in the rate of growth) in the special case where the graph is the triangular lattice, and the weights are placed on the vertices. This is the only class of distributions known where this time constant is computable: we find that it is an explicit function of the infimum of the support of t_e intersected with (0,\infty).

Averaging for Vlasov and Vlasov-Poisson equations

Series
Applied and Computational Mathematics Seminar
Time
Thursday, August 29, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Philippe ChartierInria-Rennes/IRMAR/ENS Rennes

Please Note: special time

Our ambition is to derive asymptotic equations of the Vlasov-Poisson system in the strong magntic field regime. This work is thus an attempt to (re-)derive rigorously gyrokinetic equations and to design uniformly accurate methods for solving fast-oscillating kinetic equations, i.e. methods whose cost and accuracy do not depend the stiffness parameter. The main tools used to reach this objective are averaging and PDE techniques. In this talk, I will focus primarily on the first.

Anti-concentration of random sums with dependent terms, and singularity of sparse Bernoulli matrices

Series
High Dimensional Seminar
Time
Wednesday, August 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Konstantin TikhomirovGeorgiaTech

We will consider the problem of estimating the singularity probability of sparse Bernoulli matrices, and a related question of anti-concentration of weighted sums of dependent Bernoulli(p) variables.

Based on joint work with Alexander Litvak.

Averages over Discrete Spheres

Series
Analysis Seminar
Time
Wednesday, August 28, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGeorgia Tech

Fine properties of spherical averages in the continuous setting include
$L^p$  improving estimates
and sparse bounds, interesting in the settings of a fixed radius, lacunary sets of radii, and the
full set of radii. There is a parallel theory in the setting of discrete spherical averages, as studied
by Elias Stein, Akos Magyar, and Stephen Wainger. We recall the continuous case, outline the
discrete case, and illustrate a unifying proof technique. Joint work with Robert Kesler, and
Dario Mena Arias.

Pages