Seminars and Colloquia by Series

Survey on 3-manifolds

Series
Geometry Topology Student Seminar
Time
Wednesday, November 29, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anubhav MukherjeeGeorgia Tech
I'll try to describe some known facts about 3 manifolds. And in the end I want to give some idea about Geometrization Conjecture/theorem.

Zeros of optimal polynomial approximants and spectra of Jacobi matrices

Series
Analysis Seminar
Time
Wednesday, November 29, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Catherine BeneteauUniversity of South Florida
In this talk, I will discuss some polynomials that are best approximants (in some sense!) to reciprocals of functions in some analytic function spaces of the unit disk. I will examine the extremal problem of finding a zero of minimal modulus, and will show how that extremal problem is related to the spectrum of a certain Jacobi matrix and real orthogonal polynomials on the real line.

Linear algebra of Hamiltonian matrices

Series
Research Horizons Seminar
Time
Wednesday, November 29, 2017 - 12:10 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chongchun ZengGeorgia Tech
In this talk, we consider the structure of a real $n \times n$ matrix in the form of $A=JL$, where $J$ is anti-symmetric and $L$ is symmetric. Such a matrix comes from a linear Hamiltonian ODE system with $J$ from the symplectic structure and the Hamiltonian energy given by the quadratic form $\frac 12\langle Lx, x\rangle$. We will discuss the distribution of the eigenvalues of $A$, the relationship between the canonical form of $A$ and the structure of the quadratic form $L$, Pontryagin invariant subspace theorem, etc. Finally, some extension to infinite dimensions will be mentioned.

Geometric tangential methods in nonlinear diffusive PDE

Series
PDE Seminar
Time
Tuesday, November 28, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eduardo TeixeiraUniversity of Central Florida
Geometric tangential analysis refers to a constructive systematic approach based on the concept that a problem which enjoys greater regularity can be “tangentially" accessed by certain classes of PDEs. By means of iterative arguments, the method then imports regularity, properly corrected through the path used to access the tangential equation, to the original class. The roots of this idea likely go back to the foundation of De Giorgi’s geometric measure theory of minimal surfaces, and accordingly, it is present in the development of the contemporary theory of free boundary problems. This set of ideas also plays a decisive role in Caffarelli’s work on fully non-linear elliptic PDEs, and subsequently in his studies on Monge-Ampere equations from the 1990’s. In recent years, however, geometric tangential methods have been significantly enhanced, amplifying their range of applications and providing a more user-friendly platform for advancing these endeavors. In this talk, I will discuss some fundamental ideas supporting (modern) geometric tangential methods and will exemplify their power through select examples.

Nematic liquid crystal phase in a system of interacting dimers

Series
Math Physics Seminar
Time
Tuesday, November 28, 2017 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ian JauslinIAS, Princeton
In 1979, O. Heilmann and E.H. Lieb introduced an interacting dimer model with the goal of proving the emergence of a nematic liquid crystal phase in it. In such a phase, dimers spontaneously align, but there is no long range translational order. Heilmann and Lieb proved that dimers do, indeed, align, and conjectured that there is no translational order. I will discuss a recent proof of this conjecture. This is joint work with Elliott H. Lieb.

Universality in quantum many-body systems

Series
Math Physics Seminar
Time
Tuesday, November 28, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vieri MastropietroUniversita' di Milano, Italy
Abstract: A number of quantities in quantum many-body systems show remarkable universality properties, in the sense of exact independence from microscopic details. I will present some rigorous result establishing universality in presence of many body interaction in Graphene and in Topological Insulators, both for the bulk and edge transport. The proof uses Renormalization Group methods and a combination of lattice and emerging Ward Identities.

Dynamical Path Planning Methods For Control Problems in Unknown Environment

Series
SIAM Student Seminar
Time
Monday, November 27, 2017 - 15:10 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Haoyan ZhaiSchool of Mathematics, Georgia Institute of Technology
In this talk, we provide a deterministic algorithm for robotic path finding in unknown environment and an associated graph generator use only potential information. Also we will generalize the algorithm into a path planning algorithm for certain type of optimal control problems under some assumptions and will state some approximation methods if certain assumption no longer holds in some cases. And we hope to prove more theoretical results for those algorithms to guarantee the success.

Vologodsky and Coleman integration on curves with semi-stable reduction

Series
Algebra Seminar
Time
Monday, November 27, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skyles006
Speaker
Amnon BesserGeorgia Tech/Ben-Gurion University
Let X be a curve over a p-adic field K with semi-stable reduction and let $\omega$ be a meromorphic differential on X. There are two p-adic integrals one may associated to this data. One is the Vologodsky (abelian, Zarhin, Colmez) integral, which is a global function on the K-points of X defined up to a constant. The other is the collection of Coleman integrals on the subdomains reducing to the various components of the smooth locus. In this talk I will prove the following Theorem, joint with Sarah Zerbes: The Vologodsky integral is given on each subdomain by a Coleman integrals, and these integrals are related by the condition that their differences on the connecting annuli form a harmonic 1-cocyle on the edges of the dual graph of the special fiber.I will further explain the implications to the behavior of the Vologodsky integral on the connecting annuli, which has been observed independently and used, by Stoll, Katz-Rabinoff-Zureick-Brown, in works on global bounds on the number of rational points on curves, and an interesting product on 1-forms used in the proof of the Theorem as well as in work on p-adic height pairings. Time permitting I will explain the motivation for this result, which is relevant for the interesting question of generalizing the result to iterated integrals.

Central and Central Discontinuous Galerkin (DG) Schemes on Overlapping Cells of Unstructured Grids for Solving Ideal MHD Equations with Globally Divergence-Free Magnetic Field

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 27, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zhiliang XuApplied and Computational Mathematics and Statistics Dept, U of Notre Dame
In this talk, we will present new central and central DG schemes for solving ideal magnetohydrodynamic (MHD) equations while preserving globally divergence-free magnetic field on triangular grids. These schemes incorporate the constrained transport (CT) scheme of Evans and Hawley with central schemes and central DG methods on overlapping cells which have no need for solving Riemann problems across cell edges where there are discontinuities of the numerical solution. The schemes are formally second-order accurate with major development on the reconstruction of globally divergence-free magnetic field on polygonal dual mesh. Moreover, the computational cost is reduced by solving the complete set of governing equations on the primal grid while only solving the magnetic induction equation on the polygonal dual mesh.

Pages