Seminars and Colloquia by Series

Choices and Intervals (joint with Stochastics Seminar: note unusual date+time)

Series
Combinatorics Seminar
Time
Thursday, November 9, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Elliot PaquetteThe Ohio State University
We study an online algorithm for making a well—equidistributed random set of points in an interval, in the spirit of "power of choice" methods. Suppose finitely many distinct points are placed on an interval in any arbitrary configuration. This configuration of points subdivides the circle into a finite number of intervals. At each time step, two points are sampled uniformly from the interval. Each of these points lands within some pair of intervals formed by the previous configuration. Add the point that falls in the larger interval to the existing configuration of points, discard the other, and then repeat this process. We then study this point configuration in the sense of its largest interval, and discuss other "power of choice" type modifications. Joint work with Pascal Maillard.

Two-three linked graphs

Series
Graph Theory Seminar
Time
Thursday, November 9, 2017 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Shijie XieMath, GT
Let G be a graph containing 5 different vertices a0, a1, a2, b1 and b2. We say that (G, a0, a1, a2, b1, b2) is feasible if G contains disjoint connected subgraphs G1, G2, such that {a0, a1, a2}⊆V(G1) and {b1, b2}⊆V(G2). In this talk, we will prove the existence of 5-edge configurations in (G, a0, a1, a2, b1, b2). Joint work with Changong Li, Robin Thomas, and Xingxing Yu.

A Tb Theorem for compactness and boundedness of Calderón-Zygmund operators

Series
Analysis Seminar
Time
Wednesday, November 8, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Francisco Villarroya UGA
In this talk I will introduce a Tb Theorem that characterizes all Calderón-Zygmund operators that extend compactly on L^p(R^n) by means of testing functions as general as possible. In the classical theory for boundedness, the testing functions satisfy a non-degeneracy property called accretivity, which essentially implies the existence of a positive lower bound for the absolute value of the averages of the testing functions over all dyadic cubes. However, in the setting of compact operators, due to their better properties, the hypothesis of accretivity can be relaxed to a large extend. As a by-product, the results also describe those Calderón-Zygmund operators whose boundedness can be checked with non-accretive testing functions.

A discussion of the the Lickorish Wallace Theorem

Series
Geometry Topology Student Seminar
Time
Wednesday, November 8, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech
The Lickorish Wallace Theorem states that any closed 3-manifold is the result of a +/- 1-surgery on a link in S^3. I shall discuss the relevant definitions, and present the proof as outlined in Rolfsen's text 'Knots and Links' and Lickorish's 'Introduction to Knot Theory'.

General Diffusion in Biological Environments

Series
PDE Seminar
Time
Tuesday, November 7, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chun LiuIllinois Institute of Technology
Almost all biological activities involve transport and distribution of ions and charged particles. The complicated coupling and competition between different ionic solutions in various biological environments give the intricate specificity and selectivity in these systems. In this talk, I will introduce several extended general diffusion systems motivated by the study of ion channels and ionic solutions in biological cells. In particular, I will focus on the interactions between different species, the boundary effects and in many cases, the thermal effects.

Quantum Transport Properties of Schrödinger Operator with a Quasi-Periodic Potential in Dimension Two

Series
Math Physics Seminar
Time
Tuesday, November 7, 2017 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yulia KarpeshinaUniversity of Alabama, Birmingham
Existence of ballistic transport for Schr ̈odinger operator with a quasi- periodic potential in dimension two is discussed. Considerations are based on the following properties of the operator: the spectrum of the operator contains a semiaxis of absolutely continuous spectrum and there are generalized eigenfunctions being close to plane waves ei⟨⃗k,⃗x⟩ (as |⃗k| → ∞) at every point of this semiaxis. The isoenergetic curves in the space of momenta ⃗k corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure).

Interpolation problems for curves in projective space

Series
Algebra Seminar
Time
Monday, November 6, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Isabel VogtMassachusetts Institute of Technology
In this talk we will discuss the following question: When does there exist a curve of degree d and genus g passing through n general points in P^r? We will focus primarily on what is known in the case of space curves (r=3).

Joint GT-UGA Seminar at UGA - Conway mutation and knot Floer homology by Peter Lambert-Cole and A non-standard bridge trisection of the unknot by Alex Zupan

Series
Geometry Topology Seminar
Time
Monday, November 6, 2017 - 14:30 for 2.5 hours
Location
Boyd 304
Speaker
Peter Lambert-Cole and Alex ZupanGeorgia Tech and Univ. Nebraska Lincoln
Peter Lambert-Cole: Mutant knots are notoriously hard to distinguish. Many, but not all, knot invariants take the same value on mutant pairs. Khovanov homology with coefficients in Z/2Z is known to be mutation-invariant, while the bigraded knot Floer homology groups can distinguish mutants such as the famous Kinoshita-Terasaka and Conway pair. However, Baldwin and Levine conjectured that delta-graded knot Floer homology, a singly-graded reduction of the full invariant, is preserved by mutation. In this talk, I will give a new proof that Khovanov homology mod 2 is mutation-invariant. The same strategy can be applied to delta-graded knot Floer homology and proves the Baldwin-Levine conjecture for mutations on a large class of tangles. -----------------------------------------------------------------------------------------------------------------------------------------------Alex Zupan: Generally speaking, given a type of manifold decomposition, a natural problem is to determine the structure of all decompositions for a fixed manifold. In particular, it is interesting to understand the space of decompositions for the simplest objects. For example, Waldhausen's Theorem asserts that up to isotopy, the 3-sphere has a unique Heegaard splitting in every genus, and Otal proved an analogous result for classical bridge splittings of the unknot. In both cases, we say that these decompositions are "standard," since they can be viewed as generic modifications of a minimal splitting. In this talk, we examine a similar question in dimension four, proving that -- unlike the situation in dimension three -- the unknotted 2-sphere in the 4-sphere admits a non-standard bridge trisection. This is joint work with Jeffrey Meier.

Pages