Seminars and Colloquia by Series

Transverse Surgery on Knots in Contact 3-Manifolds

Series
Dissertation Defense
Time
Tuesday, April 19, 2016 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
James ConwayGeorgia Tech
This thesis studies the effect of transverse surgery on open books, the Heegaard Floer contact invariant, and tightness. We show that surgery on the connected binding of a genus g open book that supports a tight contact structure preserves tightness if the surgery coefficient is greater than 2g-1. We also give criteria for when positive contact surgery on Legendrian knots will result in an overtwisted manifold.

Symmetry and Turan Sums of Squares

Series
ACO Colloquium
Time
Monday, April 18, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Annie RaymondUniversity of Washington, Seattle, WA
Given a graph H, the Turan graph problem asks to find the maximum number of edges in a n-vertex graph that does not contain any subgraph isomorphic to H. In recent years, Razborov's flag algebra methods have been applied to Turan hypergraph problems with great success. We show that these techniques embed naturally in standard symmetry-reduction methods for sum of squares representations of invariant polynomials. This connection gives an alternate computational framework for Turan problems with the potential to go further. Our results expose the rich combinatorics coming from the representation theory of the symmetric group present in flag algebra methods. This is joint work with James Saunderson, Mohit Singh and Rekha Thomas.

New Dynamical System Models for Games Inspired by the Fokker-Planck Equations on Graphs

Series
CDSNS Colloquium
Time
Monday, April 18, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Haomin ZhouSchool of Math, Georgia Tech
In this talk, I will present new models to describe the evolution of games. Our dynamical system models are inspired by the Fokker-Planck equations on graphs. We will present properties of the models, their connections to optimal transport on graphs, and computational examples for generalized Nash equilibria. This presentation is based on a recent joint work with Professor Shui-Nee Chow and Dr. Wuchen Li.

Long range order in random three-colorings of Z^d

Series
Combinatorics Seminar
Time
Friday, April 15, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ohad Noy FeldheimStanford University

Please Note: Joint work with Yinon Spinka.

Consider a random coloring of a bounded domain in the bipartite graph Z^d with the probability of each color configuration proportional to exp(-beta*N(F)), where beta>0, and N(F) is the number of nearest neighboring pairs colored by the same color. This model of random colorings biased towards being proper, is the antiferromagnetic 3-state Potts model from statistical physics, used to describe magnetic interactions in a spin system. The Kotecky conjecture is that in such a model with d >= 3, Fixing the boundary of a large even domain to take the color $0$ and high enough beta, a sampled coloring would typically exhibits long-range order. In particular a single color occupies most of either the even or odd vertices of the domain. This is in contrast with the situation for small beta, when each bipartition class is equally occupied by the three colors. We give the first rigorous proof of the conjecture for large d. Our result extends previous works of Peled and of Galvin, Kahn, Randall and Sorkin, who treated the zero beta=infinity case, where the coloring is chosen uniformly for all proper three-colorings. In the talk we shell give a glimpse into the combinatorial methods used to tackle the problem. These rely on structural properties of odd-boundary subsets of Z^d. No background in statistical physics will be assumed and all terms will be thoroughly explained.

Time-Reversal and Reciprocity Breaking in Electromechanical Metamaterials and Structural Lattics

Series
GT-MAP Seminar
Time
Friday, April 15, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Massimo RuzzeneAerospace Engineering and Mechanical Engineering, Georgia Tech
Recent breakthroughs in condensed matter physics are opening new directions in band engineering and wave manipulation. Specifically, challenging the notions of reciprocity, time-reversal symmetry and sensitivity to defects in wave propagation may disrupt ways in which mechanical and acoustic metamaterials are designed and employed, and may enable totally new functionalities. Non-reciprocity and topologically protected wave propagation will have profound implications on how stimuli and information are transmitted within materials, or how energy can be guided and steered so that its effects may be controlled or mitigated. The seminar will briefly introduce the state-of-the-art in this emerging field, and will present initial investigations on concepts exploiting electro-mechanical coupling and chiral and non-local interactions in mechanical lattices. Shunted piezo-electric patches are exploited to achieve time-modulated mechanical properties which lead to one-directional wave propagation in one-dimensional mechanical waveguides. A framework to realize helical edge states in two identical lattices with interlayer coupling is also presented. The methodology systematically leads to mechanical lattices that exhibit one-way, edge-bound, defect-immune, non-reciprocal wave motion. The presented concepts find potential application in vibration reduction, noise control or stress wave mitigation systems, and as part of surface acoustic wave devices capable of isolator, gyrator and circulator-like functions on compact acoustic platforms.

On some models in classical statistical mechanics

Series
Math Physics Seminar
Time
Friday, April 15, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex GrigoThe University of Oklahoma
In this talk we will consider a few different mathematical models of gas-like systems of particles, which interact through binary collisions that conserve momentum and mass. The aim of the talk will be to present how one can employ ideas from dynamical systems theory to derive macroscopic properties of such models.

A Quadratic Relaxation for a Dynamic Knapsack Problem with Stochastic Item Sizes

Series
ACO Student Seminar
Time
Friday, April 15, 2016 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel BladoGeorgia Tech
We examine a variant of the knapsack problem in which item sizes are random according to an arbitrary but known distribution. In each iteration, an item size is realized once the decision maker chooses and attempts to insert an item. With the aim of maximizing the expected profit, the process ends when either all items are successfully inserted or a failed insertion occurs. We investigate the strength of a particular dynamic programming based LP bound by examining its gap with the optimal adaptive policy. Our new relaxation is based on a quadratic value function approximation which introduces the notion of diminishing returns by encoding interactions between remaining items. We compare the bound to previous bounds in literature, including the best known pseudopolynomial bound, and contrast their corresponding policies with two natural greedy policies. Our main conclusion is that the quadratic bound is theoretically more efficient than the pseudopolyomial bound yet empirically comparable to it in both value and running time.

Intersection numbers and higher derivatives of L-functions for function fields

Series
Athens-Atlanta Number Theory Seminar
Time
Thursday, April 14, 2016 - 17:15 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zhiwei YunStanford University
In joint work with Wei Zhang, we prove a higher derivative analogue of the Waldspurger formula and the Gross-Zagier formula in the function field setting under the assumption that the relevant objects are everywhere unramified. Our formula relates the self-intersection number of certain cycles on the moduli of Shtukas for GL(2) to higher derivatives of automorphic L-functions for GL(2).

Nonabelian Cohen-Lenstra Heuristics and Function Field Theorems

Series
Athens-Atlanta Number Theory Seminar
Time
Thursday, April 14, 2016 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Melanie Matchett-WoodUniversity of Wisconsin
The Cohen-Lenstra Heuristics conjecturally give the distribution of class groups of imaginary quadratic fields. Since, by class field theory, the class group is the Galois group of the maximal unramified abelian extension, we can consider the Galois group of the maximal unramified extension as a non-abelian generalization of the class group. We will explain non-abelian analogs of the Cohen-Lenstra heuristics due to Boston, Bush, and Hajir and joint work with Boston proving cases of the non-abelian conjectures in the function field analog.

Pages