Seminars and Colloquia by Series

Infinite Loop Spaces in Algebraic Geometry

Series
Algebra Seminar
Time
Monday, October 2, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Elden ElmantoNorthwestern
A classical theorem in modern homotopy theory states that functors from finite pointed sets to spaces satisfying certain conditions model infinite loop spaces (Segal 1974). This theorem offers a recognition principle for infinite loop spaces. An analogous theorem for Morel-Voevodsky's motivic homotopy theory has been sought for since its inception. In joint work with Marc Hoyois, Adeel Khan, Vladimir Sosnilo and Maria Yakerson, we provide such a theorem. The category of finite pointed sets is replaced by a category where the objects are smooth schemes and the maps are spans whose "left legs" are finite syntomic maps equipped with a K​-theoretic trivialization of its contangent complex. I will explain what this means, how it is not so different from finite pointed sets and why it was a natural guess. In particular, I will explain some of the requisite algebraic geometry.Time permitting, I will also provide 1) an explicit model for the motivic sphere spectrum as a torsor over a Hilbert scheme and,2) a model for all motivic Eilenberg-Maclane spaces as simplicial ind-smooth schemes.

Joint GT-UGA Seminar at GT - Homology Cobordism of Seifert Spaces

Series
Geometry Topology Seminar
Time
Monday, October 2, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Matt StoffregenMIT
We use Manolescu's Pin(2)-equivariant Floer homology to study homology cobordisms among Seifert spaces. In particular, we will show that the subgroup of the homology cobordism group generated by Seifert spaces admits a \mathbb{Z}^\infty summand. This is joint work with Irving Dai.

On the recovery of measures without separation conditions

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 2, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Weilin LiUniversity of Maryland, College Park
We formulate super-resolution as an inverse problem in the space of measures, and introduce a discrete and a continuous model. For the discrete model, the problem is to accurately recover a sparse high dimensional vector from its noisy low frequency Fourier coefficients. We determine a sharp bound on the min-max recovery error, and this is an immediate consequence of a sharp bound on the smallest singular value of restricted Fourier matrices. For the continuous model, we study the total variation minimization method. We borrow ideas from Beurling in order to determine general conditions for the recovery of singular measures, even those that do not satisfy a minimum separation condition. This presentation includes joint work with John Benedetto and Wenjing Liao.

An infinite dimensional hamiltonian dynamical system from MFG theory

Series
Dynamical Systems Working Seminar
Time
Friday, September 29, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Sergio MayorgaGeorgia Tech
We will look at a system of hamiltonian equations on the torus, with an initial condition in momentum and a terminal condition in position, that arises in mean field game theory. Existence of and uniqueness of solutions will be shown, and a few remarks will be made in regard to its connection to the minimization problem of a cost functional.

No seminar: ACO Student Seminar + ACO Colloquium + Atlanta Lecture Series (on Thursday + Friday + Weekend)

Series
Combinatorics Seminar
Time
Friday, September 29, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
noneGeorgia Tech
No Combinatorics Seminar, but many others of interest: (a) on Friday [September 29th, 1pm-2pm in Skiles 005] He Guo, will give an ACO Student Seminar on "Packing nearly optimal Ramsey R(3,t) Graphs" (b) on Thursday [September 28th, 11am-12am in Skiles 006] Tom Bohman will give an ACO colloquim talk on "Randomized Controlled Trials for Combinatorial Construction" (c) on Saturday and Sunday [September 30th and October 1st] Atlanta Lecture Series in Combinatorics and Graph Theory XX takes place at Georgia Tech, with featured speaker Paul Seymour

Packing nearly optimal Ramsey R(3,t) Graphs

Series
ACO Student Seminar
Time
Friday, September 29, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
He GuoSchool of Mathematics, Georgia Tech
In 1995 Kim famously proved the Ramsey bound $R(3,t) \ge c t^2/\log t$ by constructing an $n$-vertex graph that is triangle-free and has independence number at most $C \sqrt{n \log n}$. We extend this celebrated result, which is best possible up to the value of the constants, by approximately decomposing the complete graph $K_n$ into a packing of such nearly optimal Ramsey $R(3,t)$ graphs. More precisely, for any $\epsilon>0$ we find an edge-disjoint collection $(G_i)_i$ of $n$-vertex graphs $G_i \subseteq K_n$ such that (a) each $G_i$ is triangle-free and has independence number at most $C_\epsilon \sqrt{n \log n}$, and (b) the union of all the $G_i$ contains at least $(1-\epsilon)\binom{n}{2}$ edges. Our algorithmic proof proceeds by sequentially choosing the graphs $G_i$ via a semi-random (i.e., Rödl nibble type) variation of the triangle-free process. As an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebenau, Person, and Szabó (concerning a Ramsey-type parameter introduced by Burr, Erdös, Lovász in 1976). Namely, denoting by $s_r(H)$ the smallest minimum degree of $r$-Ramsey minimal graphs for $H$, we close the existing logarithmic gap for $H=K_3$ and establish that $s_r(K_3) = \Theta(r^2 \log r)$. Based on joint work with Lutz Warnke.

Stability results in graphs of given circumference

Series
Graph Theory Seminar
Time
Thursday, September 28, 2017 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUniversity of Science and Technology of China
In this talk we will discuss some Tur\'an-type results on graphs with a given circumference. Let $W_{n,k,c}$ be the graph obtained from a clique $K_{c-k+1}$ by adding $n-(c-k+1)$ isolated vertices each joined to the same $k$ vertices of the clique, and let $f(n,k,c)=e(W_{n,k,c})$. Kopylov proved in 1977 that for $c a recent result of Li et al. and independently, of F\"{u}redi et al. on non-Hamiltonian graphs. Moreover, we prove a stability result on a classical theorem of Bondy on the circumference. We use a novel approach, which combines several proof ideas including a closure operation and an edge-switching technique.

Randomized Controlled Trials for Combinatorial Construction

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, September 28, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tom BohmanCarnegie Mellon University
The probabilistic method for constructing combinatorial objects has had a profound impact on the field since the pioneering work of Erdos in the first half of the twentieth century. Some recent applications of the probabilistic method build objects of interest by making a series of random choices that are guided by a simple rule and depend on previous choices. We give two examples of randomized algorithms of this type: random triangle removal and the triangle-free process. These algorithms address the classical questions of counting Steiner triple systems and determining the minimum independence number of a triangle-free graph on n vertices, respectively. Pseudo-random heuristics and concentration of measure phenomena play a central role in analyzing these processes.

Curvature and Isoperimetry in Graphs

Series
Dissertation Defense
Time
Thursday, September 28, 2017 - 09:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter RalliSchool of Mathematics, Georgia Tech
This dissertation concerns isoperimetric and functional inequalities in discrete spaces. The majority of the work concerns discrete notions of curvature. There isalso discussion of volume growth in graphs and of expansion in hypergraphs. [The dissertation committee consists of Profs. J. Romberg (ECE), P. Tetali (chair of the committee), W.T. Trotter, X. Yu and H. Zhou.]

Pages