Seminars and Colloquia by Series

Test Sets for Nonnegativity of Reflection-Invariant Polynomials

Series
ACO Student Seminar
Time
Friday, March 31, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jose AcevedoSchool of Mathematics, Georgia Tech
Using some classical results of invariant theory of finite reflection groups, and Lagrange multipliers, we prove that low degree or sparse real homogeneous polynomials which are invariant under the action of a finite reflection group $G$ are nonnegative if they are nonnegative on the hyperplane arrangement $H$ associated to $G$. That makes $H$ a test set for the above kind of polynomials. We also prove that under stronger sparsity conditions, for the symmetric group and other reflection groups, the test set can be much smaller. One of the main questions is deciding if certain intersections of some simply constructed real $G$-invariant varieties are empty or not.

Algebraic aspects of network induced systems of nonlinear equations

Series
Algebra Seminar
Time
Friday, March 31, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tianran ChenAuburn University at Montgomery
Networks, or graphs, can represent a great variety of systems in the real world including neural networks, power grid, the Internet, and our social networks. Mathematical models for such systems naturally reflect the graph theoretical information of the underlying network. This talk explores some common themes in such models from the point of view of systems of nonlinear equations.

Number of monochromatic two stars and triangles

Series
Stochastics Seminar
Time
Thursday, March 30, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sumit MukherjeeColumbia University
We consider the problem of studying the limiting distribution of the number of monochromatic two stars and triangles for a growing sequence of graphs, where the vertices are colored uniformly at random. We show that the limit distribution of the number of monochromatic two stars is a sum of mutually independent components, each term of which is a polynomial of a single Poisson random variable of degree 1 or 2. Further, we show that any limit distribution for the number of monochromatic two stars has an expansion of this form. In the triangle case the problem is more challenging, as in this case the class of limit distributions can involve terms with products of Poisson random variables. In this case, we deduce a necessary and sufficient condition on the sequence of graphs such that the number of monochromatic triangles is asymptotically Poisson in distribution and in the first two moments. This work is joint with Bhaswar B. Bhattacharya at University of Pennsylvania.

Distributional Approximation and Concentration via Stein's method: a biased view.

Series
School of Mathematics Colloquium
Time
Thursday, March 30, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Larry GoldsteinUniversity of Southern California
Charles Stein brought the method that now bears his name to life in a 1972 Berkeley symposium paper that presented a new way to obtain information on the quality of the normal approximation, justified by the Central Limit Theorem asymptotic, by operating directly on random variables. At the heart of the method is the seemingly harmless characterization that a random variable $W$ has the standard normal ${\cal N}(0,1)$ distribution if and only if E[Wf(W)]=E[f'(W)] for all functions $f$ for which these expressions exist. From its inception, it was clear that Stein's approach had the power to provide non-asymptotic bounds, and to handle various dependency structures. In the near half century since the appearance of this work for the normal, the `characterizing equation' approach driving Stein's method has been applied to roughly thirty additional distributions using variations of the basic techniques, coupling and distributional transformations among them. Further offshoots are connections to Malliavin calculus and the concentration of measure phenomenon, and applications to random graphs and permutations, statistics, stochastic integrals, molecular biology and physics.

Weighted Inequalities via Dyadic Operators and A Learning Theory Approach to Compressive Sensing

Series
Dissertation Defense
Time
Thursday, March 30, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Scott SpencerGeorgia Institute of Technology
This thesis explores topics from two distinct fields of mathematics. The first part addresses a theme in abstract harmonic analysis, while the focus of the second part is a topic in compressive sensing. The first part of this dissertation explores the application of dominating operators in harmonic analysis by sparse operators. We make use of pointwise sparse dominations weighted inequalities for Calder\'on-Zygmund operators, Hardy-Littlewood maximal operator, and their fractional analogues. Dominating bilinear forms by sparse forms allows us to derive weighted inequalities for oscillatory integral operators (polynomially modulated CZOs) and random discrete Hilbert transforms. The later is defined on sets of initegers with asymptotic density zero, making these weighted inequalitites particulalry attractive. We also discuss a characterization of a certain weighted BMO space by commutators of multiplication operators with fractional integral operators. Compressed sensing illustrates the possibility of acquiring and reconstructing sparse signals via underdetermined (linear) systems. It is believed that iid Gaussian measurement vectors give near optimal results, with the necessary number of measurements on the order of slog⁡(n/s) -- n is ambient dimension and s is sparsity threshhold.The recovery algorithm used above relies on a certain quasi-isometry property of the measurement matrix. A surprising result is that the same order of measurements gives an analogous quasi-isometry in the extreme quantization of one-bit sensing. Bylik and Lacey deliver this result as a consequence of a certain stochastic process on the sphere. We will discuss an alternative method that relies heavily on the VC-dimension of a class of subsets on the sphere.

Asymptotic analysis on the modelling of the shallow-water waves with the Coriolis effect

Series
PDE Seminar
Time
Wednesday, March 29, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yue LiuUniversity Of Texas At Arlington
In this talk, a mathematical model of long-crested water waves propagating mainly in one direction with the effect of Earth's rotation is derived by following the formal asymptotic procedures. Such a model equation is analogous to the Camassa-Holm approximation of the two-dimensional incompressible and irrotational Euler equations and has a formal bi-Hamiltonian structure. Its solution corresponding to physically relevant initial perturbations is more accurate on a much longer time scale. It is shown that the deviation of the free surface can be determined by the horizontal velocity at a certain depth in the second-order approximation. The effects of the Coriolis force caused by the Earth rotation and nonlocal higher nonlinearities on blow-up criteria and wave-breaking phenomena are also investigated. Our refined analysis is approached by applying the method of characteristics and conserved quantities to the Riccati-type differential inequality.

Branched covers of spheres I

Series
Geometry Topology Student Seminar
Time
Wednesday, March 29, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech
In this series of talks we will show that every closed oriented three manifold is a branched cover over the three sphere, with some additional properties. In the first talk we will discuss some examples of branched coverings of surfaces and three manifolds, and a classical result of Alexander, which states that any closed oriented combinatorial manifold is always a branched cover over the sphere.

Persistence as a spectral property

Series
Analysis Seminar
Time
Wednesday, March 29, 2017 - 02:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Shahaf NitzanGeorgia Tech
A Gaussian stationary sequence is a random function f: Z --> R, for which any vector (f(x_1), ..., f(x_n)) has a centered multi-normal distribution and whose distribution is invariant to shifts. Persistence is the event of such a random function to remain positive on a long interval [0,N]. Estimating the probability of this event has important implications in engineering , physics, and probability. However, though active efforts to understand persistence were made in the last 50 years, until recently, only specific examples and very general bounds were obtained. In the last few years, a new point of view simplifies the study of persistence, namely - relating it to the spectral measure of the process. In this talk we will use this point of view to study the persistence in cases where the spectral measure is 'small' or 'big' near zero. This talk is based on Joint work with Naomi Feldheim and Ohad Feldheim.

(-1)-homogeneous solutions of stationary incompressible Navier-Stokes equations with singular rays

Series
PDE Seminar
Time
Tuesday, March 28, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xukai YanRutgers University
In 1944, L.D. Landau first discovered explicit (-1)-homogeneous solutions of 3-d stationary incompressible Navier-Stokes equations (NSE) with precisely one singularity at the origin, which are axisymmetric with no swirl. These solutions are now called Landau solutions. In 1998 G. Tian and Z. Xin proved that all solutions which are (-1) homogeneous, axisymmetric with one singularity are Landau solutions. In 2006 V. Sverak proved that with just the (-1)-homogeneous assumption Landau solutions are the only solutions with one singularity. He also proved that there are no such solutions in dimension greater than 3. Our work focuses on the (-1)-homogeneous solutions of 3-d incompressible stationary NSE with finitely many singularities on the unit sphere.In this talk we will first classify all (-1)-homogeneous axisymmetric no-swirl solutions of 3-d stationary incompressible NSE with one singularity at the south pole on the unit sphere as a two dimensional solution surface. We will then present our results on the existence of a one parameter family of (-1)-homogeneous axisymmetric solutions with non-zero swirl and smooth on the unit sphere away from the south pole, emanating from the two dimensional surface of axisymmetric no-swirl solutions. We will also present asymptotic behavior of general (-1)-homogeneous axisymmetric solutions in a cone containing the south pole with a singularity at the south pole on the unit sphere. We also constructed families of solutions smooth on the unit sphere away from the north and south poles.This is a joint work with Professor Yanyan Li and Li Li.

Pages