Seminars and Colloquia by Series

Persistence of translation symmetry in the BCS model with radial pair interaction

Series
Math Physics Seminar
Time
Tuesday, March 28, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alissa GeisingerUniversity of Tuebingen, Germany
We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. For this purpose, we first introduce the full BCS functional and the translation invariant BCS functional. Our main result states that theminimizers of the full BCS functional coincide with the minimizers of the translation invariant BCS functional for temperatures in the aforementioned interval. In the case of vanishing angular momentum our results translate to the three dimensional case. Finally, we will explain the strategy and main ideas of the proof. This is joint work with Andreas Deuchert, Christian Hainzl and Michael Loss.

Algebraic and Computational Aspects of Tensors

Series
Algebra Seminar
Time
Monday, March 27, 2017 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ke YeUniversity of Chicago
Abstract: Tensors are direct generalizations of matrices. They appear in almost every branch of mathematics and engineering. Three of the most important problems about tensors are: 1) compute the rank of a tensor 2) decompose a tensor into a sum of rank one tensors 3) Comon’s conjecture for symmetric tensors. In this talk, I will try to convince the audience that algebra can be used to study tensors. Examples for this purpose include structured matrix decomposition problem, bilinear complexity problem, tensor networks states, Hankel tensors and tensor eigenvalue problems. In these examples, I will explain how algebraic tools are used to answer the three problems mentioned above.

Computing Integer Partitions

Series
Combinatorics Seminar
Time
Monday, March 27, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Damir YeliussizovUCLA
I will talk about the problem of computing the number of integer partitions into parts lying in some integer sequence. We prove that for certain classes of infinite sequences the number of associated partitions of an input N can be computed in time polynomial in its bit size, log N. Special cases include binary partitions (i.e. partitions into powers of two) that have a key connection with Cayley compositions and polytopes. Some questions related to algebraic differential equations for partition sequences will also be discussed. (This is joint work with Igor Pak.)

Differential Algebra of Cubic Graphs

Series
Geometry Topology Seminar
Time
Monday, March 27, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roger CasalsMIT
In this talk we associate a combinatorial dg-algebra to a cubic planar graph. This algebra is defined by counting binary sequences, which we introduce, and we shall provide explicit computations. From there, we study the Legendrian surfaces behind these combinatorial constructions, including Legendrian surgeries and the count of Morse flow trees, and discuss the proof of the correspondence between augmentations and constructible sheaves for this class of Legendrians.

Latent voter model on Locally Tree Like Random graphs

Series
IMPACT Distinguished Lecture
Time
Friday, March 17, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rick DurettDuke University
In the latent voter model, which models the spread of a technology through a social network, individuals who have just changed their choice have a latent period, which is exponential with rate λ during which they will not buy a new device. We study site and edge versions of this model on random graphs generated by a configuration model in which the degrees d(x) have 3 ≤ d(x) ≤ M. We show that if the number of vertices n → ∞ and log n << λn << n then the latent voter model has a quasi-stationary state in which each opinion has probability ≈ 1/2 and persists in this state for a time that is ≥ nm for any m <∞. Thus, even a very small latent period drastically changes the behavior of the voter model.

Lagrangian Floer Theory II

Series
Geometry Topology Working Seminar
Time
Friday, March 17, 2017 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

Please Note: This will be a 1.5 hour (maybe slightly longer) seminar.

Following up on the previous series of talks we will show how to construct Lagrangian Floer homology and discuss it properties.

Communication-Efficient Decentralized and Stochastic Optimization

Series
ACO Student Seminar
Time
Friday, March 17, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Groseclose 402
Speaker
Soomin LeeSchool of Industrial &amp;amp; Systems Engineering, Georgia Tech
Optimization problems arising in decentralized multi-agent systems have gained significant attention in the context of cyber-physical, communication, power, and robotic networks combined with privacy preservation, distributed data mining and processing issues. The distributed nature of the problems is inherent due to partial knowledge of the problem data (i.e., a portion of the cost function or a subset of the constraints is known to different entities in the system), which necessitates costly communications among neighboring agents. In this talk, we present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems which can significantly reduce the number of inter-node communications. Our major contribution is the development of decentralized communication sliding methods, which can skip inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions.This is a joint work with Guanghui (George) Lan and Yi Zhou.

Sparse Multivariate Rational Function Model Discovery

Series
Algebra Seminar
Time
Friday, March 17, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Erich KaltofenNorth Carolina State University
Error-correcting decoding is generalized to multivariate sparse polynomial and rational function interpolation from evaluations that can be numerically inaccurate and where several evaluations can have severe errors (``outliers''). Our multivariate polynomial and rational function interpolation algorithm combines Zippel's symbolic sparse polynomial interpolation technique [Ph.D. Thesis MIT 1979] with the numeric algorithm by Kaltofen, Yang, and Zhi [Proc. SNC 2007], and removes outliers (``cleans up data'') by techniques from the Welch/Berlekamp decoder for Reed-Solomon codes. Our algorithms can build a sparse function model from a number of evaluations that is linear in the sparsity of the model, assuming that there are a constant number of ouliers and that the function probes can be randomly chosen.

Pages