Seminars and Colloquia by Series

Obstructing pseudo-convex embeddings of Brieskorn spheres into complex 2-space

Series
Geometry Topology Seminar
Time
Monday, October 24, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunUniversity of Alabama
A Stein manifold is a complex manifold with particularly nice convexity properties. In real dimensions above 4, existence of a Stein structure is essentially a homotopical question, but for 4-manifolds the situation is more subtle. An important question that has been circulating among contact and symplectic topologist for some time asks: whether every contractible smooth 4-manifold admits a Stein structure? In this talk we will provide examples that answer this question negatively. Moreover, along the way we will provide new evidence to a closely related conjecture of Gompf, which asserts that a nontrivial Brieskorn homology sphere, with either orientation, cannot be embedded in complex 2-space as the boundary of a Stein submanifold.

Supperdiusion constants for certain nonuniformly hyperbolic systems

Series
CDSNS Colloquium
Time
Monday, October 24, 2016 - 11:06 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hongkun ZhangU. Mass Amherst
We investigate deterministic superdiusion in nonuniformly hyperbolic system models in terms of the convergence of rescaled distributions to the normal distribution following the abnormal central limit theorem, which differs from the usual requirement that the mean square displacement grow asymptotically linearly in time. We obtain an explicit formula for the superdiffusion constant in terms of the ne structure that originates in the phase transitions as well as the geometry of the configuration domains of the systems. Models that satisfy our main assumptions include chaotic Lorentz gas, Bunimovich stadia, billiards with cusps, and can be apply to other nonuniformly hyperbolic systems with slow correlation decay rates of order O(1/n)

On the k-SUM problem

Series
Combinatorics Seminar
Time
Friday, October 21, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Esther EzraGeorgia Tech

Please Note: Joint work with Micha Sharir (Tel-Aviv University).

Following a recent improvement of Cardinal etal. on the complexity of a linear decision tree for k-SUM, resulting in O(n^3 \log^3{n}) linear queries, we present a further improvement to O(n^2 \log^2{n}) such queries. Our approach exploits a point-location mechanism in arrangements of hyperplanes in high dimensions, and, in fact, brings a new view to such mechanisms. In this talk I will first present a background on the k-SUM problem, and then discuss bottom-vertex triangulation and vertical decomposition of arrangements of hyperplanes and how they serve our analysis.

Mechanical response of three-dimensional tensegrity lattices

Series
GT-MAP Seminar
Time
Friday, October 21, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Julian RimoliGT AE
Most available techniques for the design of tensegrity structures can be grouped in two categories. On the one hand, methods that rely on the systematic application of topological and geometric rules to regular polyhedrons have been applied to the generation of tensegrity elementary cells. On the other hand, efforts have been made to either combine elementary cells or apply rules of self-similarity in order to generate complex structures of engineering interest, for example, columns, beams and plates. However, perhaps due to the lack of adequate symmetries on traditional tensegrity elementary cells, the design of three-dimensional tensegrity lattices has remained an elusive goal. In this work, we first develop a method to construct three-dimensional tensegrity lattices from truncated octahedron elementary cells. The required space-tiling translational symmetry is achieved by performing recursive reflection operations on the elementary cells. We then analyze the mechanical response of the resulting lattices in the fully nonlinear regime via two distinctive approaches: we first adopt a discrete reduced-order model that explicitly accounts for the deformation of individual tensegrity members, and we then utilize this model as the basis for the development of a continuum approximation for the tensegrity lattices. Using this homogenization method, we study tensegrity lattices under a wide range of loading conditions and prestressed configurations. We present Ashby charts for yield strength to density ratio to illustrate how our tensegrity lattices can potentially achieve superior performance when compared to other lattices available in the literature. Finally, using the discrete model, we analyze wave propagation on a finite tensegrity lattice impacting a rigid wall.

The Kelmans-Seymour conjecture on subdivisions of $K_5$

Series
School of Mathematics Colloquium
Time
Thursday, October 20, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xingxing YuGeorgia Tech
A well-known theorem of Kuratowski (1930) in graph theory states that a graph is planar if, and only if, it does not contain a subdivision of $K_5$ or $K_{3,3}$. Wagner (1937) gave a structural characterization of graphs containing no subdivision of $K_{3,3}$. Seymour in 1977 and, independently, Kelmans in 1979 conjectured that if a graph does not contain a subdivision of $K_5$ then it must be planar or contain a set of at most 4 vertices whose removal results in a disconnected graph. In this talk, I will discuss additional background on this conjecture (including connection to the Four Color Theorem), and outline our recent proof of this conjecture (joint work with Dawei He and Yan Wang). I will also mention several problems that are related to this conjecture or related to our approach.

Fractional Calculus, Reproducing Kernel Hilbert Spaces, and Approximation Theory

Series
Analysis Seminar
Time
Wednesday, October 19, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joel RosenfeldUniversity of Florida
I will present results on numerical methods for fractional order operators, including the Caputo Fractional Derivative and the Fractional Laplacian. Fractional order systems have been of growing interest over the past ten years, with applications to hydrology, geophysics, physics, and engineering. Despite the large interest in fractional order systems, there are few results utilizing collocation methods. The numerical methods I will present rely heavily on reproducing kernel Hilbert spaces (RKHSs) as a means of discretizing fractional order operators. For the estimation of a function's Caputo fractional derivative we utilize a new RKHS, which can be seen as a generalization of the Fock space, called the Mittag-Leffler RKHS. For the fractional Laplacian, the Wendland radial basis functions are utilized.

Intersection forms and homotopy equivalence

Series
Geometry Topology Student Seminar
Time
Wednesday, October 19, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew McCulloughGeorgia Institute of Technology
We will discuss some facts about intersection forms on closed, oriented 4-manifolds. We will also sketch the proof that for two closed, oriented, simply connected manifolds, they are homotopy equivalent if and only if they have isomorphic intersection forms.

PDE models for collective dynamics

Series
Research Horizons Seminar
Time
Wednesday, October 19, 2016 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Yao YaoDepartment of Mathematics, Georgia Institute of Technology

Please Note: Refreshments will be provided before the seminar.

Collective behavior can be seen in many animal species, such as flocking birds, herding mammals, and swarming bacteria. In the continuum limit, these phenomena can be modeled by nonlocal PDEs. In this talk, after discussing some PDE models for collective dynamics, I will focus on the analysis of the Keller-Segel equation, which models bacterial chemotaxis. Mathematically, this equation exhibits an intriguing "critical mass phenomenon": namely, solutions exist globally in time for all initial data whose mass is below some certain constant, whereas finite-time blow-up always happen if the initial mass is above this constant. I will introduce some useful analysis tools that lead to this result, and discuss some active areas of current research.

Some Properties of Effective Hamiltonians

Series
PDE Seminar
Time
Tuesday, October 18, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Yifeng YuUniverstiy of California, Irvine
A major open problem in periodic homogenization of Hamilton-Jacobi equations is to understand deep properties of the effective Hamiltonian. In this talk, I will present some related works in both convex and non-convex situations. If time permits, relevant problems from applications in turbulent combustion and traffic flow will also be discussed.

Constrained exact optimization in Phylogenetics

Series
Mathematical Biology Seminar
Time
Tuesday, October 18, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tandy WarnowThe University of Illinois at Urbana-Champaign
The estimation of phylogenetic trees from molecular sequences (e.g., DNA, RNA, or amino acid sequences) is a major step in many biological research studies, and is typically approached using heuristics for NP-hard optimization problems. In this talk, I will describe a new approach for computing large trees: constrained exact optimization. In a constrained exact optimization, we implicitly constrain the search space by providing a set X of allowed bipartitions on the species set, and then use dynamic programming to find a globally optimal solution within that constrained space. For many optimization problems, the dynamic programming algorithms can complete in polynomial time in the input size. Simulation studies show that constrained exact optimization also provides highly accurate estimates of the true species tree, and analyses of both biological and simulated datasets shows that constrained exact optimization provides improved solutions to the optimization criteria efficiently. We end with some discussion of future research in this topic. (Refreshments will be served before the talk at 10:30.)

Pages