Seminars and Colloquia by Series

Secants of the Veronese and the Determinant

Series
Algebra Seminar
Time
Monday, November 16, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cameron FarnsworthTexas A&M
Let det_n be the homogeneous polynomial obtained by taking the determinant of an n x n matrix of indeterminates. In this presentation linear maps called Young flattenings will be defined and will be used to show new lower bounds on the symmetric border rank of det_n.

Stochastic models of collective motion

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 16, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Gil ArielBar-Ilan University
Collective movement is one of the most prevailing observations in nature. Yet, despite considerable progress, many of the theoretical principles underlying the emergence of large scale synchronization among moving individuals are still poorly understood. For example, a key question in the study of animal motion is how the details of locomotion, interaction between individuals and the environment contribute to the macroscopic dynamics of the hoard, flock or swarm. The talk will present some of the prevailing models for swarming and collective motion with emphasis on stochastic descriptions. The goal is to identify some generic characteristics regarding the build-up and maintenance of collective order in swarms. In particular, whether order and disorder correspond to different phases, requiring external environmental changes to induce a transition, or rather meta-stable states of the dynamics, suggesting that the emergence of order is kinetic. Different aspects of the phenomenon will be presented, from experiments with locusts to our own attempts towards a statistical physics of collective motion.

Trisecting Smooth 4-manifolds with Boundary

Series
Geometry Topology Seminar
Time
Monday, November 16, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nick CastroUniversity of Georgia
A trisection of a smooth, oriented, compact 4-manifold X is a decomposition into three diffeomorphic 4-dimensional 1-handlebodies with certain nice intersections properties. This is a very natural 4-dimensional analog of Heegaard splittings of 3-manifolds. In this talk I will define trisections of closed 4-manifolds, but will quickly move to the case of 4-manifolds with connected boundary. I will discuss how these "relative trisections" interact with open book decompositions on the bounding 3-manifold. Finally, I will discuss a gluing theorem which allows us to glue together relative trisections to induce a trisection on a closed 4-manifold.

Effective equidistribution of horocycle maps

Series
CDSNS Colloquium
Time
Monday, November 16, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
James TanisCollege de France
We prove results concerning the equidistribution of some "sparse" subsets of orbits of horocycle flows on $SL(2, R)$ mod lattice. As a consequence of our analysis, we recover the best known rate of growth of Fourier coefficients of cusp forms for arbitrary noncompact lattices of $SL(2, R)$, up to a logarithmic factor. This talk addresses joint work with Livio Flaminio, Giovanni Forni and Pankaj Vishe.

ALS - Coloring and girth

Series
Other Talks
Time
Sunday, November 15, 2015 - 09:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Noga AlonTel Aviv University and IAS, Princeton

Please Note: Second featured lecture in the Atlanta Lecture Series in Combinatorics and Graph Theory mini-conference

The study of graphs with high girth and high chromatic number had a profound influence on the history of Combinatrics and Graph Theory, and led to the development of sophisticated methods involving tools from probability, topology, number theory, algebra and combinatorics. I will discuss the topic focusing on a recent new explicit construction of graphs (and hypergraphs) of high girth and high chromatic number, in joint work with Kostochka, Reiniger, West and Zhu.

ALS - Non-constructive combinatorics

Series
Other Talks
Time
Saturday, November 14, 2015 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Noga AlonTel Aviv University and IAS, Princeton

Please Note: First featured lecture in the Atlanta Lecture Series in Combinatorics and Graph Theory mini-conference

I will describe several old and new applications of topological and algebraic methods in the derivation of combinatorial results. In all of them the proofs provide no efficient solutions for the corresponding algorithmic problems.

Signrank and its applications in combinatorics and complexity

Series
ACO Colloquium
Time
Friday, November 13, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Noga AlonTel Aviv University and IAS, Princeton

Please Note: Refreshments will be served in the atrium after the talk.

The sign-rank of a real matrix A with no 0 entries is the minimum rank of a matrix B so that A_{ij}B_{ij} >0 for all i,j. The study of this notion combines combinatorial, algebraic, geometric and probabilistic techniques with tools from real algebraic geometry, and is related to questions in Communication Complexity, Computational Learning and Asymptotic Enumeration. I will discuss the topic and describe its background, several recent results from joint work with Moran and Yehudayoff, and some intriguing open problems.

On the linear span of lattice points in a parallelepiped

Series
ACO Student Seminar
Time
Friday, November 13, 2015 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Marcel CelayaGeorgia Tech
We find a good characterization for the following problem: Given a rational row vector c and a lattice L in R^n which contains the integer lattice Z^n, do all lattice points of L in the half-open unit cube [0,1)^n lie on the hyperplane {x in R^n : cx = 0}? This work generalizes a theorem due to G. K. White, which provides sufficient and necessary conditions for a tetrahedron in R^3 with integral vertices to have no other integral points. Our approach is based on a novel proof of White's result using number-theoretic techniques due to Morrison and Stevens. In this talk, we illustrate some of the ideas and describe some applications of this problem.

Recovery of High-Dimensional Low-Rank Matrices

Series
Stochastics Seminar
Time
Thursday, November 12, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tony CaiWharton School, University of Pennsylvania
Low-rank structure commonly arises in many applications including genomics, signal processing, and portfolio allocation. It is also used in many statistical inference methodologies such as principal component analysis. In this talk, I will present some recent results on recovery of a high-dimensional low-rank matrix with rank-one measurements and related problems including phase retrieval and optimal estimation of a spiked covariance matrix based on one-dimensional projections. I will also discuss structured matrix completion which aims to recover a low rank matrix based on incomplete, but structured observations.

Recent progress in stochastic topology

Series
School of Mathematics Colloquium
Time
Thursday, November 12, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Matthew KahleOhio State University
The study of random topological spaces: manifolds, simplicial complexes, knots, and groups, has received a lot of attention in recent years. This talk will focus on random simplicial complexes, and especially on a certain kind of topological phase transition, where the probability that that a certain homology group is trivial passes from 0 to 1 within a narrow window. The archetypal result in this area is the Erdős–Rényi theorem, which characterizes the threshold edge probability where the random graph becomes connected. One recent breakthrough has been in the application of Garland’s method, which allows one to prove homology-vanishing theorems by showing that certain Laplacians have large spectral gaps. This reduces problems in random topology to understanding eigenvalues of certain random matrices, and the method has been surprisingly successful. This is joint work with Christopher Hoffman and Elliot Paquette.

Pages