Seminars and Colloquia by Series

Analyticity in time and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow

Series
PDE Seminar
Time
Tuesday, August 25, 2009 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
David HoffIndiana University, Bloomington
We prove that solutions of the Navier-Stokes equations of three-dimensional, compressible flow, restricted to fluid-particle trajectories, can be extended as analytic functions of complex time. One important corollary is backwards uniqueness: if two such solutions agree at a given time, then they must agree at all previous times. Additionally, analyticity yields sharp estimates for the time derivatives of arbitrary order of solutions along particle trajectories. I'm going to integrate into the talk something like a "pretalk" in an attempt to motivate the more technical material and to make things accessible to a general analysis audience.

Bendixson conditions for differential equations in Banach spaces

Series
CDSNS Colloquium
Time
Monday, August 24, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Qian WangSchool of Mathematics, Georgia Tech
The Bendixson conditions for general nonlinear differential equations in Banach spaces are developed in terms of stability of associated compound differential equations. The generalized Bendixson criterion states that, if some measure of 2-dimensional surface area tends to zero with time, then there are no closed curves that are left invariant by the dynamics. In particular, there are no nontrivial periodic orbits, homoclinic loops or heteroclinic loops. Concrete conditions that preclude the existence of periodic solutions for a parabolic PDE will be given. This is joint work with Professor James S. Muldowney at University of Alberta.

Submodular Function Approximation

Series
Combinatorics Seminar
Time
Friday, August 21, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Satoru IwataKyoto University
In this lecture, I will explain the greedy approximation algorithm on submodular function maximization due to Nemhauser, Wolsey, and Fisher. Then I will apply this algorithm to the problem of approximating an monotone submodular functions by another submodular function with succinct representation. This approximation method is based on the maximum volume ellipsoid inscribed in a centrally symmetric convex body. This is joint work with Michel Goemans, Nick Harvey, and Vahab Mirrokni.

Submodular Function Minimization

Series
Combinatorics Seminar
Time
Wednesday, August 19, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Satoru IwataKyoto University
In this lecture, I will review combinatorial algorithms for minimizing submodular functions. In particular, I will present a new combinatorial algorithm obtained in my recent joint work with Jim Orlin.

Rigid and Nonrigid Registration Models for Medical Images

Series
Applied and Computational Mathematics Seminar
Time
Tuesday, August 18, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Justin W. L. WanComputer Science, University of Waterloo
In image guided procedures such as radiation therapies and computer-assisted surgeries, physicians often need to align images that are taken at different times and by different modalities. Typically, a rigid registration is performed first, followed by a nonrigid registration. We are interested in efficient registrations methods which are robust (numerical solution procedure will not get stuck at local minima) and fast (ideally real time). We will present a robust continuous mutual information model for multimodality regisration and explore the new emerging parallel hardware for fast computation. Nonrigid registration is then applied afterwards to further enhance the results. Elastic and fluid models were usually used but edges and small details often appear smeared in the transformed templates. We will propose a new inviscid model formulated in a particle framework, and derive the corresponding nonlinear partial differential equations for computing the spatial transformation. The idea is to simulate the template image as a set of free particles moving toward the target positions under applied forces. Our model can accommodate both small and large deformations, with sharper edges and clear texture achieved at less computational cost. We demonstrate the performance of our model on a variety of images including 2D and 3D, mono-modal and multi-modal, synthetic and clinical data.

Submodular Functions in Graph Theory

Series
Combinatorics Seminar
Time
Friday, August 14, 2009 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Satoru IwataKyoto University
In this lecture, I will explain connections between graph theory and submodular optimization. The topics include theorems of Nash-Williams on orientation and detachment of graphs.

Parabolic systems and an underlying Lagrangian

Series
Dissertation Defense
Time
Thursday, July 2, 2009 - 13:30 for 2.5 hours
Location
Skiles 255
Speaker
Turkay YolcuSchool of Mathematics, Georgia Tech
In this thesis, we extend De Giorgi's interpolation method to a class of parabolic equations which are not gradient flows but possess an entropy functional and an underlying Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial variables, but also it does not induce a metric. Assuming the initial condition is a density function, not necessarily smooth, but solely of bounded first moments and finite entropy, we use a variational scheme to discretize the equation in time and construct approximate solutions. Moreover, De Giorgi's interpolation method reveals to be a powerful tool for proving convergence of our algorithm. Finally, we analyze uniqueness and stability of our solution in L^1.

Digital Chaotic Communications

Series
Dissertation Defense
Time
Wednesday, July 1, 2009 - 15:30 for 3 hours
Location
Skiles 255
Speaker
Alan J. MichaelsSchool of Electrical and Computer Engineering, Georgia Tech
This disseratation provides the conceptual development, modeling and simulation, physical implementation and measured hardware results for a procticable digital coherent chaotic communication system.

Pages