Additive Structure, Rich Lines, and Exponential Set-Expansion
- Series
- Dissertation Defense
- Time
- Monday, May 11, 2009 - 13:00 for 2 hours
- Location
- Skiles 255
- Speaker
- Evan Borenstein – School of Mathematics, Georgia Tech
In this contribution we study the asymptotic behaviour of polynomials orthogonal with respect to a Sobolev-Type inner product
\langle p, q\rangle_S = \int^\infty_0 p(x)q(x)x^\alpha e^{-x} dx + IP(0)^t AQ(0), \alpha > -1,
where p and q are polynomials with real coefficients,
A = \pmatrix{M_0 & \lambda\\ \lambda & M_1},
IP(0) = \pmatrix{p(0)\\ p'(0)}, Q(0) = \pmatrix{q(0)\\ q'(0)},
and A is a positive semidefinite matrix.
First, we analyze some algebraic properties of these polynomials. More precisely, the connection relations between the polynomials orthogonal with respect to the above inner product and the standard Laguerre polynomials are deduced. On the other hand, the symmetry of the multiplication operator by x^2 yields a five term recurrence relation that such polynomials satisfy.
Second, we focus the attention on their outer relative asymptotics with respect to the standard Laguerre polynomials as well as on an analog of the Mehler-Heine formula for the rescaled polynomials.
Third, we find the raising and lowering operators associated with these orthogonal polynomials. As a consequence, we deduce the holonomic equation that they satisfy. Finally, some open problems will be considered.
Please Note: These are two hour lectures.