Seminars and Colloquia by Series

Nikodym-type spherical maximal functions

Series
Analysis Seminar
Time
Wednesday, March 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alan ChangPrinceton University

We study $L^p$ bounds on Nikodym maximal functions associated to spheres. In contrast to the spherical maximal functions studied by Stein and Bourgain, our maximal functions are uncentered: for each point in $\mathbb R^n$, we take the supremum over a family of spheres containing that point. This is joint work with Georgios Dosidis and Jongchon Kim.

 

Common fixed points of commuting homeomorphisms of S^2.

Series
Geometry Topology Student Seminar
Time
Wednesday, March 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cindy TanUniversity of Chicago

When do commuting homeomorphisms of S^2 have a common fixed point? Christian Bonatti gave the first sufficient condition: Commuting diffeomorphisms sufficiently close to the identity in Diff^+(S^2) always admit a common fixed point. In this talk we present a result of Michael Handel that extends Bonatti's condition to a much larger class of commuting homeomorphisms. If time permits, we survey results for higher genus surfaces due to Michael Handel and Morris Hirsch, and connections to certain compact foliated 4-manifolds.

Correspondence colouring of random graphs

Series
Time
Tuesday, February 28, 2023 - 15:45 for 1 hour (actually 50 minutes)
Location
Speaker
Liana YepremyanEmory University

We show that Erdős-Renyi random graph with constant density has correspondence chromatic number $O(n/\sqrt{\log n})$; this matches a prediction from linear Hadwiger’s conjecture for correspondence colouring. The proof follows from a sufficient condition for correspondence colourability in terms of the numbers of independent sets, following Bernshteyn's method. We conjecture the truth to be of order $O(n/\log n)$ as suggested by the random correspondence assignment. This is joint work with Zdenek Dvorak.

On the collision of two kinks for the phi^6 model with equal low speed

Series
PDE Seminar
Time
Tuesday, February 28, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Abdon MoutinhoLAGA, Université Sorbonne Paris Nord

We will talk about our results on the elasticity and stability of the 
collision of two kinks with low speed v>0 for the nonlinear wave 
equation of dimension 1+1 known as the phi^6 model. We will show that 
the collision of the two solitons is "almost" elastic and that, after 
the collision, the size of the energy norm of the remainder and the size 
of the defect of the speed of each soliton can be, for any k>0, of the 
order of any monomial v^{k} if v is small enough.

References:
This talk is based on our current works:
On the collision problem of two kinks for the phi^6 model with low speed 
   [https://arxiv.org/abs/2211.09749]
Approximate kink-kink solutions for the phi^6 model in the low-speed 
limit [https://arxiv.org/abs/2211.09714]

Surface braid groups and Heisenberg groups by Cindy Tan

Series
Geometry Topology Seminar
Time
Monday, February 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Cindy TanUniversity of Chicago

The classical braid groups can be viewed from many different angles and admit generalizations in just as many directions. Surface braid groups are a topological generalization of the braid groups that have close connections with mapping class groups of surfaces. In this talk we review a recent result on minimal nonabelian finite quotients of braid groups. In considering the analogous problem for surface braid groups, we construct nilpotent nonabelian quotients by generalizing the Heisenberg group. These Heisenberg quotients do not arise as quotients of the braid group.

Generalization and sampling from the dynamics perspective

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 27, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347
Speaker
Prof. Nisha ChandramoorthyGT CSE

Please Note: Speaker will present in person

In this talk, we obtain new computational insights into two classical areas of statistics: generalization and sampling. In the first part, we study generalization: the performance of a learning algorithm on unseen data. We define a notion of generalization for non-converging training with local descent approaches via the stability of loss statistics. This notion yields generalization bounds in a similar manner to classical algorithmic stability. Then, we show that more information from the training dynamics provides clues to generalization performance.   

In the second part, we discuss a new method for constructing transport maps. Transport maps are transformations between the sample space of a source (which is generally easy to sample) and a target (typically non-Gaussian) probability distribution. The new construction arises from an infinite-dimensional generalization of a Newton method to find the zero of a "score operator". We define such a score operator that gives the difference of the score -- gradient of logarithm of density -- of a transported distribution from the target score. The new construction is iterative, enjoys fast convergence under smoothness assumptions, and does not make a parametric ansatz on the transport map.

Crossing the transcendental divide: from translation surfaces to algebraic curves

Series
Algebra Seminar
Time
Monday, February 27, 2023 - 10:20 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Yelena MandelshtamUC Berkeley

A translation surface is obtained by identifying edges of polygons in the plane to create a compact Riemann surface equipped with a nonzero holomorphic one-form. Every Riemann surface can be given as an algebraic curve via its Jacobian variety. We aim to construct explicitly the underlying algebraic curves from their translation surfaces, given as polygons in the plane. The key tools in our approach are discrete Riemann surfaces, which allow us to approximate the Riemann matrices, and then, via theta functions, the equations of the curves. In this talk, I will present our algorithm and numerical experiments. From the newly found Riemann matrices and equations of curves, we can then make several conjectures about the curves underlying the Jenkins-Strebel representatives, a family of examples that until now, lived squarely on the analytic side of the transcendental divide between Riemann surfaces and algebraic curves.

Exploring global dynamics and blowup in some nonlinear PDEs

Series
CDSNS Colloquium
Time
Friday, February 24, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Online
Speaker
Jonathan JaquetteBrown University

https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Conservation laws and Lyapunov functions are powerful tools for proving the global existence or stability of solutions to PDEs, but for most complex systems these tools are insufficient to completely understand non-perturbative dynamics. In this talk I will discuss a complex-scalar PDE which may be seen as a toy model for vortex stretching in fluid flow, and cannot be neatly categorized as conservative nor dissipative.

In a recent series of papers, we have shown (using computer-assisted-proofs) that this equation exhibits rich dynamical behavior existing globally in time: non-trivial equilibria, homoclinic orbits, heteroclinic orbits, and integrable subsystems foliated by periodic orbits. On the other side of the coin, we show several mechanisms by which solutions can blowup.

An Approximate Bayesian Computation Approach for Embryonic Cell Migration Model Selection

Series
Mathematical Biology Seminar
Time
Friday, February 24, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tracy StepienUniversity of Florida - Department of Mathematics

Please Note: The classroom version of this event will be held in Skiles 005. Everyone on campus at Georgia Tech is highly encouraged to attend this version. The virtual version will be administered through Zoom. (Link: https://gatech.zoom.us/j/95527383236)

In embryonic development, formation of blood vessels in the retina of the eye is critically dependent on prior establishment of a mesh of astrocytes.  Astrocytes emerge from the optic nerve head and then migrate over the retinal surface in a radially symmetric manner and mature through differentiation.  We develop a PDE model describing the migration and differentiation of astrocytes and study the appropriateness of the model equation components that combines approximate Bayesian computation (ABC) and sensitivity analysis (SA). Comparing numerical simulations to experimental data, we identify model components that can be removed via model reduction using ABC+SA.

Lefschetz Fibrations and Exotic 4-Manifolds

Series
Dynamical Systems Working Seminar
Time
Friday, February 24, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nur Saglam and Jon SimoneGeorgia Tech

Lefschetz fibrations are very useful in the sense that they have one-one correspondence with the relations in the Mapping Class Groups and they can be used to construct exotic (homeomorphic but not diffeomorphic) 4-manifolds. In this series of talks, we will first introduce Lefschetz fibrations and Mapping Class Groups and give examples. Then, we will dive more into 4-manifold world. More specifically, we will talk about the history of  exotic 4-manifolds and we will define the nice tools used to construct exotic 4-manifolds, like symplectic normal connect sum, Rational Blow-Down, Luttinger Surgery, Branch Covers, and Knot Surgery. Finally, we will provide various constructions of exotic 4-manifolds.

Pages