Seminars and Colloquia by Series

An introduction to 4-manifolds

Series
Geometry Topology Student Seminar
Time
Wednesday, August 30, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sierra KnavelGeorgia Tech

In the early 80's, Freedman discovered that the Whitney trick could be performed in 4-dimensions which quickly led to a complete classification of closed, simply connected topological 4-manifolds. With gauge theory, Donaldson showed that 4-manifolds differ greatly from their higher dimensional counterparts which uncovered the stark differences between topological and smooth results in dimension 4. In this introductory talk, we will give a brief overview this classification and why dimension 4 is so unique. Then, we will describe handlebody decompositions of 4-manifolds and draw several Kirby pictures representing some basic 4-mfds.

A quantitative stability estimate for the Sobolev Inequality

Series
Analysis Seminar
Time
Wednesday, August 30, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LossGaTech

I’ll present a quantitative version of a stability estimate
for the Sobolev Inequality improving previous results of Bianchi
and Egnell. The estimate has the correct dimensional dependence
which leads to a stability estimate for the Logarithmic Sobolev inequality.
This is joint work with Dolbeault, Esteban, Figalli and Frank.

Incompressible MHD Without Resistivity: structure and regularity

Series
PDE Seminar
Time
Tuesday, August 29, 2023 - 15:03 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ronghua PanGeorgia Tech

We study the global existence of classical solutions to the incompressible viscous MHD system without magnetic diffusion in 2D and 3D. The lack of resistivity or magnetic diffusion poses a major challenge to a global regularity theory even for small smooth initial data. However, the interesting nonlinear structure of the system not only leads to some significant challenges, but some interesting stabilization properties, that leads to the possibility of the theory of global existence of classical and/or strong solutions. This talk is based on joint works with Yi Zhou, Yi Zhu, Shijin Ding, Xiaoying Zeng, and Jingchi Huang.

Automorphisms of the fine 1-curve graph

Series
Geometry Topology Seminar
Time
Monday, August 28, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roberta ShapiroGeorgia Tech

The fine curve graph of a surface S was introduced by Bowden–Hensel–Webb in 2019 to study the diffeomorphism group of S. We consider a variant of this graph, called the fine 1-curve graph, whose vertices are essential simple closed curves and edges connect curves that intersect in at most one point. Building on the works of Long–Margalit–Pham–Verberne–Yao and Le Roux–Wolff, we show that the automorphism group of the fine 1-curve graph is isomorphic to the homeomorphism group of S. This is joint work with Katherine W. Booth and Daniel Minahan.

Recent Advances in Finite Element Methods for Solving Poisson-Nernst-Planck Ion Channel Models

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 28, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347 (to be confirmed)
Speaker
Dexuan XieUniversity of Wisconsin-Milwaukee
Ion channels are a class of proteins embedded in biological membranes, acting as biological devices or 'valves' for cells and playing a critical role in controlling various biological functions. To compute macroscopic ion channel kinetics, such as Gibbs free energy, electric currents, transport fluxes, membrane potential, and electrochemical potential, Poisson-Nernst-Planck ion channel (PNPIC) models have been developed as systems of nonlinear partial differential equations. However, they are difficult to solve numerically due to solution singularities, exponential nonlinearities, multiple physical domain issues, and the requirement of ionic concentration positivity. In this talk, I will present the recent progress we made in the development of finite element methods for solving PNPIC models. Specifically, I will introduce our improved PNPIC models and describe the mathematical and numerical techniques we utilized to develop efficient finite element iterative methods. Additionally, I will introduce the related software packages we developed for a voltage-dependent anion-channel protein and a mixture solution of multiple ionic species. Finally, I will present numerical results to demonstrate the fast convergence of our iterative methods and the high performance of our software package. This work was partially supported by the National Science Foundation through award number DMS-2153376 and the Simons Foundation through research award 711776.

Computing isotopy type of real zero sets faster for n-variate (n+k)-nomials

Series
Algebra Seminar
Time
Monday, August 28, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Weixun DengTexas A&M
Suppose f is a Laurent polynomial in n variables with degree d, exactly (n+2) monomial terms, and all its coefficients in {-H,...,H} for some positive integer H. Suppose further that the exponent vectors of f do not all lie in an affine hyperplane: Such a set of exponent vectors is referred to as a circuit. We prove that the positive zero set of f is isotopic to the real zero set of an explicit n-variate quadric q, and give a fast algorithm to explicitly compute q: The bit complexity is (log(dH))^O(n). The best previous bit-complexity bounds were of the form (dlog(H))^{\Omega(n)} (to compute a data structure called a roadmap). Our results also extend to real zero sets of n-variate exponential sums over circuits. Finally, we discuss how to approach the next case up: n-variate polynomials with exactly (n+3) terms.

An introduction to the combinatorial topology of surfaces

Series
Geometry Topology Seminar Pre-talk
Time
Monday, August 28, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Roberta ShapiroGeorgia Tech

This talk will be an introduction to the theory of surfaces, some tools we use to study surfaces, and some uses of surfaces in "real life". In particular, we will discuss the mapping class group and the curve complex. This talk will be aimed at an audience with a minimal background in low-dimensional topology. 

An Introduction to Teichmüller Theory

Series
Geometry Topology Student Seminar
Time
Wednesday, August 23, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex NolteRice University

Say you’ve got an (orientable) surface S and you want to do geometry with it. Well, the complex plane C has dimension 2, so you might as well try to model S on C and see what happens. The objects you get from following this thought are called complex structures. It turns out that most surfaces have a rich but manageable amount of genuinely different complex structures. I’ll focus in this talk on how to think about comparing and deforming complex structures on S. I’ll explain the remarkable result that there are highly structured “best” maps between (marked) complex structures, and how this can be used to show the right space of complex structures on S is a finite-dimensional ball. This is known as Teichmüller’s theorem, and I’ll be following Bers’ proof.

Non-positive Stein-fillable open books of genus one

Series
Geometry Topology Seminar
Time
Monday, August 21, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vitalijs BrejevsUniversity of Vienna

Contact 3-manifolds arise organically as boundaries of symplectic 4-manifolds, so it’s natural to ask: Given a contact 3-manifold Y, does there exist a symplectic 4-manifold X filling Y in a compatible way? Stein fillability is one such notion of compatibility that can be explored via open books: representations of a 3-manifold by means of a surface with boundary and its self-diffeomorphism, called a monodromy. I will discuss joint work with Andy Wand in which we exhibit first known Stein-fillable contact manifolds whose supporting open books of genus one have non-positive monodromies. This settles the question of correspondence between Stein fillings and positive monodromies for open books of all genera. Our methods rely on a combination of results of J. Conway, Lecuona and Lisca, and some observations about lantern relations in the mapping class group of the twice-punctured torus.

Appearance of multistability and hydra effect in a discrete-time epidemic model

Series
Other Talks
Time
Friday, August 18, 2023 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lauren ChildsVirginia Tech

Please Note: This seminar will be delivered in a hybrid Zoom format. The in-person version is held in Skiles 005 while the Zoom version is held at this link: https://gatech.zoom.us/j/99424341824

One-dimensional discrete-time population models, such as Logistic or Ricker growth, can exhibit periodic and chaotic dynamics. Incorporating epidemiological interactions through the addition of an infectious class causes an interesting complexity of new behaviors. Here, we examine a two-dimensional susceptible-infectious (SI) model with underlying Ricker population growth. In particular, the system with infection has a distinct bifurcation structure from the disease-free system. We use numerical bifurcation analysis to determine the influence of infection on the types and appearance of qualitatively distinct long-time dynamics. We find that disease-induced mortality leads to the appearance of multistability, such as stable four-cycles and chaos dependent upon the initial condition. Furthermore, previous work showed that infection that alters the ability to reproduce can lead to unexpected increases in total population size. A similar phenomenon is seen in some models where an increase in population size with a decreased growth rate occurs, known as the ‘hydra effect.’ Thus, we examine the appearance and extent of the hydra effect, particularly when infection is introduced during cyclic or chaotic population dynamics.

Pages