Seminars and Colloquia by Series

The Grand Arc Graph -- A "curve graph" for infinite-type surfaces

Series
Geometry Topology Seminar
Time
Monday, March 14, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Assaf Bar-NatanUniversity of Toronto

In this talk, I will be defining the grand arc graph for infinite-type surfaces. This simplicial graph is motivated by the works of Fanoni-Ghaswala-McLeay, Bavard, and Bavard-Walker to define an infinite-type analogue of the curve graph. As in these earlier works, the grand arc graph is connected, (oftentimes) infinite-diameter, and (sometimes) delta hyperbolic. Moreover, the mapping class group acts on it by isometries, and the action is continuous on the visible boundary. If there's time, this talk will degenerate into open speculation about what the boundary looks like and what we can do with it.

Low-dimensional Modeling for Deep Learning

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 14, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
https://gatech.zoom.us/j/96551543941
Speaker
Zhihui ZhuUniversity of Denvor

In the past decade, the revival of deep neural networks has led to dramatic success in numerous applications ranging from computer vision to natural language processing to scientific discovery and beyond. Nevertheless, the practice of deep networks has been shrouded with mystery as our theoretical understanding of the success of deep learning remains elusive.

In this talk, we will exploit low-dimensional modeling to help understand and improve deep learning performance. We will first provide a geometric analysis for understanding neural collapse, an intriguing empirical phenomenon that persists across different neural network architectures and a variety of standard datasets. We will utilize our understanding of neural collapse to improve training efficiency. We will then exploit principled methods for dealing with sparsity and sparse corruptions to address the challenges of overfitting for modern deep networks in the presence of training data corruptions. We will introduce a principled approach for robustly training deep networks with noisy labels and robustly recovering natural images by deep image prior.

Mathematics in Motion

Series
Other Talks
Time
Sunday, March 13, 2022 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Drew Charter School, 300 Eva Davis Way SE, Atlanta 30317
Speaker
Evans Harrell, Dan Margalit, GT students, local artistsGT and others

The math-themed show at the Atlanta Science Festival will be less elaborate than in the last few years, but we are back to apearing live on stage!  We are also hoping to arrange for live-streaming.  Mathematics in Motion will use dance and circus arts to engage the public.   (Dan and Evans and several GT students are involved, but don't worry, mathematicians won't be doing the dancing!)

There will be two shows on Sunday the 13th, begininng at 2:00 and 5:00 pm.

Faster p-Norm Regression Using Sparsity

Series
ACO Student Seminar
Time
Friday, March 11, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Mehrdad GhadiriGeorgia Tech CS

Given an n-by-d matrix A and a vector of size n, the p-norm problem asks for a vector x that minimizes the following

\sum_{i=1}^n (a_i^T x - b_i)^p,

where a_i is the i’th row of A. The study of p=2 and p=1 cases dates back to Legendre, Gauss, and Laplace. Other cases of p have also been used in statistics and machine learning as robust estimators for decades. In this talk, we present the following improvements in the running time of solving p-norm regression problems.

For the case of 1

For 1

The talk is based on a joint work with Richard Peng and Santosh Vempala.

On Herman positive metric entropy conjecture

Series
CDSNS Colloquium
Time
Friday, March 11, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
Online via Zoom
Speaker
Dmitry TuraevImperial College

Please Note: Link: https://us06web.zoom.us/j/83392531099?pwd=UHh2MDFMcGErbzFtMHBZTmNZQXM0dz09

Consider any area-preserving map of R2 which has an elliptic periodic orbit. We show that arbitrarily close to this map (in the C-infinity topology) there exists an area-preserving map which has a "chaotic island" - an open set where every point has positive maximal Lyapunov exponent. The result implies that the naturally sound conjectures that relate the observed chaotic behavior in non-hyperbolic conservative systems with the positivity of the metric entropy need a rethinking. 

Nonnegativity and Real-Rootedness

Series
Algebra Student Seminar
Time
Friday, March 11, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 or ONLINE
Speaker
Kevin ShuGeorgia Tech

There are many interesting classes of polynomials in real algebraic geometry that are of modern interest. A polynomial is nonnegative if it only takes nonnegative values on R^n. A univariate polynomial is real-rooted if all of its complex roots are real, and a hyperbolic polynomial is a multivariate generalization of a real-rooted polynomial. We will discuss connections between these two classes of polynomials. In particular, we will discuss recent ideas of Saunderson giving new ways of proving that a polynomial is nonnegative beyond showing that it is sum-of-squares.

Teams link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1646885419648?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Bootstrap Percolation with Drift

Series
Stochastics Seminar
Time
Thursday, March 10, 2022 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Daniel BlanquicettUniversity of California, Davis

We will motivate this talk by exhibiting recent progress on (either general or symmetric anisotropic) bootstrap percolation models in $d$-dimensions. Then, we will discuss our intention to start a deeper study of non-symmetric models for $d\ge 3$. It looks like some proportion of them could be related to first passage percolation models (in lower dimensions).

This talk will be online at https://bluejeans.com/216376580/6460

Matrix Concentration and Synthetic Data

Series
Job Candidate Talk
Time
Thursday, March 10, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/405947238/3475
Speaker
March BoedihardjoUC Irvine

Classical matrix concentration inequalities are sharp up to a logarithmic factor. This logarithmic factor is necessary in the commutative case but unnecessary in many classical noncommutative cases. We will present some matrix concentration results that are sharp in many cases, where we overcome this logarithmic factor by using an easily computable quantity that captures noncommutativity. Joint work with Afonso Bandeira and Ramon van Handel.

Due to privacy, access to real data is often restricted. Data that are not completely real but resemble certain properties of real data become natural substitutes. Data of this type are called synthetic data. I will talk about the extent to which synthetic data may resemble real data under privacy and computational complexity restrictions. Joint work with Thomas Strohmer and Roman Vershynin.

The link to the online talk:  https://bluejeans.com/405947238/3475

L^2-boundedness of gradients of single layer potentials for elliptic operators with coefficients of Dini mean oscillation-type

Series
Analysis Seminar
Time
Wednesday, March 9, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
ONLINE (Zoom link in abstract)
Speaker
Carmelo PuliattiUniversity of the Basque Country, Spain

We consider a uniformly elliptic operator $L_A$ in divergence form associated with an $(n+1)\times(n+1)$-matrix  $A$ with real, bounded, and possibly non-symmetric coefficients. If a proper {$L^1$-mean oscillation} of the coefficients of $A$ satisfies suitable Dini-type assumptions, we prove the following: if $\mu$ is a compactly supported Radon measure in $\mathbb{R}^{n+1}$, $n \geq 2$,   and

$$T_\mu f(x)=\int \nabla_x\Gamma_A (x,y)f(y)\, d\mu(y)$$

denotes the gradient of the single layer potential associated with $L_A$, then

$$1+ \|T_\mu\|_{L^2(\mu)\to L^2(\mu)}\approx 1+ \|\mathcal R_\mu\|_{L^2(\mu)\to L^2(\mu)},$$

where $\mathcal R_\mu$ indicates the $n$-dimensional Riesz transform. This makes possible to obtain direct generalization of some deep geometric results, initially obtained for $\mathcal R_\mu$, which were recently extended to  $T_\mu$ under a H\"older continuity assumption on the coefficients of the matrix $A$.

This is a joint work with Alejandro Molero, Mihalis Mourgoglou, and Xavier Tolsa.

Multiscale Modeling of Prion Aggregate Dynamics in Yeast

Series
Mathematical Biology Seminar
Time
Wednesday, March 9, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Mikahl Banwarth-KuhnUniversity of California, Merced

Please Note: Meeting Link: https://bluejeans.com/426529046/8775

Prion proteins are responsible for a variety of fatal neurodegenerative diseases in mammals but are harmless to Baker's yeast (S. cerevisiae)- making it an ideal system for investigating the protein dynamics associated with prion diseases. Most mathematical frameworks for modeling prion aggregate dynamics either focus on protein dynamics in isolation, absent from a changing cellular environment, or modeling prion aggregate dynamics in a population of cells by considering the "average" behavior. However, such models are unable to reproduce in vivo properties of different yeast prion strains.

In this talk, I will show some results from recent individual-based simulations where we study how the organization of a yeast population depends on the division and growth properties of the colonies. Each individual cell has their own configuration of prion aggregates, and we study how the population level phenotypes are a natural consequence of the interplay between the cell cycle, budding cell division and aggregate dynamics. We quantify how common experimentally observed outcomes depend on population heterogeneity.

Recording link: https://bluejeans.com/s/lbpACr_YZ0N

Pages