An introduction to Nonlinear Algebra
- Series
- Research Horizons Seminar
- Time
- Wednesday, November 9, 2022 - 12:30 for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Papri Dey – Georgia Institute of Technology – pdey33@gatech.edu
In recent years tremendous progress was made in understanding the ``inviscid damping" phenomenon near shear flows and vortices, which are steady states for the 2d incompressible Euler equation, especially at the linearized level. However, in real fluids viscosity plays an important role. It is natural to ask if incorporating the small but crucial viscosity term (and thus considering the Navier Stokes equation in a high Reynolds number regime instead of Euler equations) could change the dynamics in any dramatic way. It turns out that for the perturbative regime near a spectrally stable monotonic shear flows in an infinite periodic channel (to avoid boundary layers and long wave instabilities), we can prove uniform-in-viscosity inviscid damping. The proof introduces techniques that provide a unified treatment of the classical Orr-Sommerfeld equation in a way analogous to Rayleigh equations.
How good of an invariant is the Jones polynomial? The question is closely tied to studying braid group representations since the Jones polynomial can be defined as a (normalized) trace of a braid group representation.
In this talk, I will present my work developing a new theory to precisely characterize the entries of classical braid group representations, which leads to a generic faithfulness result for the Burau representation of B_4 (the faithfulness is a longstanding question since the 1930s). In forthcoming work, I use this theory to furthermore explicitly characterize the Jones polynomial of all 3-braid closures and generic 4-braid closures. I will also describe my work which uses the class numbers of quadratic number fields to show that the Jones polynomial detects the unknot for 3-braid links - this work also answers (in a strong form) a question of Vaughan Jones.
I will discuss all of the relevant background from scratch and illustrate my techniques through simple examples.
https://gatech.zoom.us/my/margalit?pwd=b3RhY3pVZUdlRUR3S1FLZzhFR1RVUT09
Morse theory establishes a celebrated link between classical gradient dynamics and the topology of the
underlying phase space. It provided the motivation for two independent developments. On the one hand, Conley's
theory of isolated invariant sets and Morse decompositions, which is a generalization of Morse theory, is able
to encode the global dynamics of general dynamical systems using topological information. On the other hand,
Forman's discrete Morse theory on simplicial complexes, which is a combinatorial version of the classical
theory, and has found numerous applications in mathematics, computer science, and applied sciences.
In this talk, we introduce recent work on combinatorial topological dynamics, which combines both of the
above theories and leads as a special case to a dynamical Conley theory for Forman vector fields, and more
general, for multivectors. This theory has been developed using the general framework of finite topological
spaces, which contain simplicial complexes as a special case.
The ring of multivariate polynomials carries a natural action of the symmetric group. Quotienting by the ideal generated by the polynomials which are invariant under this action yields the "coinvariant algebra," an object with many beautiful algebraic and combinatorial properties. We will survey these properties and then discuss recent generalizations where the multivariate polynomials may contain anti-commuting ("superspace") variables. This talk is based on joint work with Brendon Rhoades.
Please Note: Zoom link: https://us06web.zoom.us/j/83392531099?pwd=UHh2MDFMcGErbzFtMHBZTmNZQXM0dz09
We show that for any natural number n, the set of domains containing absolutely periodic orbits of order n are dense in the set of bounded strictly convex domains with smooth boundary. The proof that such an orbit exists is an extension to billiard maps of the results of a paper by Gonchenko, Shilnikov, and Turaev, where it is proved that such maps are dense in Newhouse domains in regions of real-analytic area-preserving two-dimensional maps. Our result is a step toward disproving a conjecture that no absolutely periodic billiard orbits of infinite order exist in Euclidean billiards and is also an indication that Ivrii's Conjecture about the measure set of periodic orbits may not be true.
One of the most beautiful aspects of math is the interplay between its different fields. We will discuss one such interaction by studying topology using tools from combinatorics and group theory. In particular, given a surface (two-dimensional manifold) S, we construct the curve complex of S, which is a graph that encodes topological data about the surface. We will then state a seminal result of Ivanov: the symmetries of a surface S are in a natural bijection with the symmetries of its curve complex. In the direction of the proof of Ivanov's result, we will touch on some tools we have when working with infinite graphs.
Let $A$ be drawn uniformly at random from the set of all $n \times n$ symmetric matrices with entries in $\{-1,1\}$. What is the probability that $A$ is singular? This is a classical problem at the intersection of probability and combinatorics. I will give an introduction to this type of question and sketch a proof that the singularity probability of $A$ is exponentially small in $n$. This is joint work with Marcelo Campos, Marcus Michelen and Julian Sahasrabudhe.
In recent years, there has been increased interest in using quantum computing for the purposes of solving problems in combinatorial optimization. No prior knowledge of quantum computing is necessary for this talk; in particular, the talk will be divided into three parts: (1) a gentle high-level introduction to the basics of quantum computing, (2) a general framework for solving combinatorial optimization problems with quantum computing (the Quantum Approximate Optimization Algorithm introduced by Farhi et al.), (3) and some recent results that my colleagues and I have found. Our group has looked at the Max-Cut problem and have developed a new quantum algorithm that utilizes classically-obtained warm-starts in order to improve upon already-existing quantum algorithms; this talk will discuss both theoretical and experimental results associated with our approach with our main results being that we obtain a 0.658-approximation for Max-Cut, our approach provably converges to the Max-Cut as a parameter (called the quantum circuit depth) increases, and (on small graphs) are approach is able to empirically beat the (classical) Goemans-Williamson algorithm at a relatively low quantum circuit-depth (i.e. using a small amount of quantum resources). This work is joint with Jai Moondra, Bryan Gard, Greg Mohler, and Swati Gupta.
https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09
Oscillations are ubiquitous in the brain, but their role is not completely understood. In this talk we will focus on the study of oscillations in neuronal networks. I will introduce some neuronal models and I will show how tools from dynamical systems theory, such as the parameterization method for invariant manifolds or the separatrix map, can be used to provide a thorough analysis of the oscillatory dynamics. I will show how the conclusions obtained may contribute to unveiling the role of oscillations in certain cognitive tasks.