In linear algebra classes we learn that a symmetic matrix with
real entries has real eigenvalues. But many times we deal with nonsymmetric
matrices that we want them to have real eigenvalues and be stable under a
small perturbation. In the 1930's totally positive matrices were discovered
in mechanical problems of vibtrations, then lost for over 50 years. They
were rediscovered in the 1990's as esoteric objects in quantum groups and
crystal bases. In the 2000's these matrices appeared in relation to
Teichmuller space and its quantization. I plan to give a high school
introduction to totally positive matrices.
Wednesday, October 7, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Ramazan Tinaztepe – Georgia Tech
Modulation spaces are a class of Banach spaces which provide a quantitative time-frequency analysis of functions via the Short-Time Fourier Transform. The modulation spaces are the "right" spaces for time-frequency analysis andthey occur in many problems in the same way that Besov Spaces are attached to wavelet theory and issues of smoothness. In this seminar, I will talk about embeddings of modulation Spaces into BMO or VMO (the space of functions of bounded or vanishing mean oscillation, respectively ). Membership in VMO is central to the Balian-Low Theorem, which is a cornerstone of time-frequency analysis.
Thursday, October 8, 2009 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Laura DeMarco – Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago
A classification of the dynamics of polynomials in one complex variable has remained elusive, even when considering only the simpler "structurally stable" polynomials. In this talk, I will describe the basics of polynomial iteration, leading up to recent results in the direction of a complete classification. In particular, I will describe a (singular) metric on the complex plane induced by the iteration of a polynomial. I will explain how this geometric structure relates to topological conjugacy classes within the moduli space of polynomials.
Thursday, October 8, 2009 - 12:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Ye Luo – Electrical and Computer Engineering, Georgia Tech
A metric graph is a geometric realization of a finite graph by identifying each edge with a real interval. A divisor on a metric graph Gamma is an element of the free abelian group on Gamma. The rank of a divisor on a metric graph is a concept appearing in the Riemann-Roch theorem for metric graphs (or tropical curves) due to Gathmann and Kerber, and Mikhalkin and Zharkov. A rank-determining set of a metric graph Gamma is defined to be a subset A of Gamma such that the rank of a divisor D on Gamma is always equal to the rank of D restricted on A. I will present an algorithm to derive the reduced divisor from any effective divisor in the same linear system, and show constructively that there exist finite rank-determining sets. Based on this discovery, we can compute the rank of an arbitrary divisor on any metric graph. In addition, I will discuss the properties of rank-determining sets in general and formulate a criterion for rank-determining sets.
Friday, October 9, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Allen Hoffmeyer – School of Mathematics, Georgia Tech
This talk is based on a paper by Medvedev and Scaillet which derives closed form
asymptotic expansions for option implied volatilities (and option prices).
The model is a two-factor jump-diffusion stochastic volatility one with short time to
maturity. The authors derive a power series expansion (in log-moneyness and time
to maturity) for the implied volatility of near-the-money options with small time to
maturity. In this talk, I will discuss their techniques and results.
Friday, October 9, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Igor Belegradek – Georgia Tech
This 2 hour talk is a gentle introduction to simply-connected sugery
theory (following classical work by Browder, Novikov, and Wall). The
emphasis will be on classification of high-dimensional manifolds and
understanding concrete examples.
Friday, October 9, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 154 (Unusual time and room)
Speaker
Carl Mueller – University of Rochester
One of the most important stochastic partial differential equations,
known as the superprocess, arises as a limit in population dynamics.
There are several notions of uniqueness, but for many years only weak
uniqueness was known. For a certain range of parameters, Mytnik and
Perkins recently proved strong uniqueness. I will describe joint work
with Barlow, Mytnik and Perkins which proves nonuniqueness for the
parameters not included in Mytnik and Perkins' result. This
completely settles the question for strong uniqueness, but I will end
by giving some problems which are still open.
Friday, October 9, 2009 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Ernie Croot – School of Math, Georgia Tech
In this talk I will discuss a new technique discovered by myself
and Olof Sisask which produces many new insights in additive combinatorics,
not to mention new
proofs of classical theorems previously proved only using harmonic
analysis. Among these new proofs is one for Roth's theorem on three-term
arithmetic progressions, which gives the best bounds so
far achieved by any combinatorial method. And another is a new proof
that positive density subsets of the integers mod p contain very
long arithmetic progressions, first proved by Bourgain, and improved
upon by Ben Green and Tom Sanders. If time permits, I will discuss
how the method can be applied to the 2D corners problem.