Seminars and Colloquia by Series

Joint UGA-GT Topology Seminar at GT: Brieskorn spheres bounding rational balls

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kyle LarsonUGA

Fintushel and Stern showed that the Brieskorn sphere Σ(2, 3, 7) bounds a rational homology ball, while its non-trivial Rokhlin invariant obstructs it from bounding an integral homology ball. It is known that their argument can be modified to show that the figure-eight knot is rationally slice, and we use this fact to provide the first additional examples of Brieskorn spheres that bound rational homology balls but not integral homology balls, including two infinite families. This is joint work with Selman Akbulut.

Joint UGA-GT Topology Seminar at GT: Homotopy invariants of homology cobordism and knot concordance

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kent OrrIndiana University
Modern homotopy invariants of links derive from Gauss’ work on linking numbers.  Many modern examples have arisen following Milnor’s early work.  I will define and investigate a `universal' homotopy invariant of homology cobordism classes of orientable 3-manifolds.  Time permitting (unlikely,) the resulting equivalence classes yield further invariants using filtrations, and classical and von Neumann signatures.  Primary focus will be given to defining these
invariants, and the tools essential to their definition.

Asymptotic-preserving and positivity-preserving numerical methods for a class of stiff kinetic equations

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 10, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Jingwei HuPurdue

Kinetic equations play an important role in multiscale modeling hierarchy. It serves as a basic building block that connects the microscopic particle models and macroscopic continuum models. Numerically approximating kinetic equations presents several difficulties: 1) high dimensionality (the equation is in phase space); 2) nonlinearity and stiffness of the collision/interaction terms; 3) positivity of the solution (the unknown is a probability density function); 4) consistency to the limiting fluid models; etc. I will start with a brief overview of the kinetic equations including the Boltzmann equation and the Fokker-Planck equation, and then discuss in particular our recent effort of constructing efficient and robust numerical methods for these equations, overcoming some of the aforementioned difficulties. This is joint work with Ruiwen Shu (University of Maryland).

On mixing properties of infinite measure preserving systems

Series
CDSNS Colloquium
Time
Monday, February 10, 2020 - 11:15 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Dmitry DolgopyatUniversity of Maryland

We present several new results concerning mixing properties of
hyperbolic systems preserving an infinite measure making a particular
emphasis on mixing for extended systems. This talk is based on a joint
work with Peter Nandori.

Characterizing Smoothness of Quotients

Series
Job Candidate Talk
Time
Monday, February 10, 2020 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matthew SatrianoUniversity of Waterloo

Given an action of a finite group $G$ on a complex vector space $V$, the Chevalley-Shephard-Todd Theorem gives a beautiful characterization for when the quotient variety $V/G$ is smooth. In his 1986 ICM address, Popov asked whether this criterion could be extended to the case of Lie groups. I will discuss my contributions to this problem and some intriguing questions in combinatorics that this raises. This is based on joint work with Dan Edidin.

Scalefree hardness of the Euclidean TSP

Series
Combinatorics Seminar
Time
Friday, February 7, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wesley PegdenCarnegie Mellon University

We  show  that  if  $P\neq NP$,  then  a  wide  class  of  TSP heuristics fail to approximate the length of the TSP to asymptotic 
optimality, even for random Euclidean instances.  Previously, this result was not even known for any heuristics (greedy, etc) used in practice.  As an application, we show that when  using  a  heuristic from  this  class,  a  natural  class  of  branch-and-bound algorithms takes exponential time to find an optimal tour (again, even on a random point-set),  regardless  of  the  particular  branching  strategy  or lower-bound algorithm used.

Learning functions varying along an active subspace

Series
SIAM Student Seminar
Time
Friday, February 7, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao LiuGT Math

Many functions of interest are in a high-dimensional space but exhibit low-dimensional structures. This work studies regression of a $s$-Hölder function $f$ in $\mathbb{R}^D$ which varies along an active subspace of dimension $d$ while $d\ll D$. A direct approximation of $f$ in $\mathbb{R}^D$ with an $\varepsilon$ accuracy requires the number of samples $n$ in the order of $\varepsilon^{-(2s+D)/s}$. In this work, we modify the Generalized Contour Regression (GCR) algorithm to estimate the active subspace and use piecewise polynomials for function approximation. GCR is among the best estimators for the active subspace, but its sample complexity is an open question. Our modified GCR improves the efficiency over the original GCR and leads to a mean squared estimation error of $O(n^{-1})$ for the active subspace, when $n$ is sufficiently large. The mean squared regression error of $f$ is proved to be in the order of $\left(n/\log n\right)^{-\frac{2s}{2s+d}}$, where the exponent depends on the dimension of the active subspace $d$ instead of the ambient space $D$. This result demonstrates that GCR is effective in learning low-dimensional active subspaces. The convergence rate is validated through several numerical experiments.

This is a joint work with Wenjing Liao.

Detecting gerrymandering with mathematical rigor

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, February 6, 2020 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wesley PegdenMathematics, Carnegie Mellon University

Please Note: (Refreshments will be served at 2:30pm after the lecture.)

In recent years political parties have more and more expertly 
crafted political districtings to favor one side or another, while at 
the same time, entirely new techniques to detect and measure these 
efforts are being developed.

I will discuss a rigorous method which uses Markov chains---random 
walks---to statistically assess gerrymandering of political districts 
without requiring heuristic validation of the structures of the Markov 
chains which arise in the redistricting context.  In particular, we will 
see two examples where this methodology was applied in successful 
lawsuits which overturned district maps in Pennsylvania and North Carolina.

Decoupling and applications: a journey from continuous to discrete

Series
Job Candidate Talk
Time
Thursday, February 6, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ciprian DemeterIndiana University

Decoupling is a Fourier analytic tool that  has repeatedly proved its extraordinary potential for a broad range of applications to number theory (counting solutions to Diophantine systems, estimates for the growth of the Riemann zeta), PDEs (Strichartz estimates, local smoothing for the wave equation, convergence of solutions to the initial data), geometric measure theory (the Falconer distance conjecture)  and harmonic analysis (the Restriction Conjecture). The abstract theorems are formulated and proved in a continuous framework, for arbitrary functions with spectrum supported near curved manifolds. At this level of generality, the proofs involve no number theory, but rely instead on  wave packet analysis and incidence geometry related to the Kakeya phenomenon.   The special case when the spectrum is localized near lattice points leads to unexpected  solutions of conjectures once thought to pertain to the realm of number theory. 

Fillings of Contact 3 Manifolds and Relations in Mapping Class Groups of Surfaces

Series
Geometry Topology Student Seminar
Time
Wednesday, February 5, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

A useful way of studying contact 3 manifolds is by looking at their open book decompositions. A result of Akbulut-Ozbagci, Ghiggini, and Loi-Piergallini showed that the manifold is filled by a Stein manifold if and only if the monodromy of an open book can be factorised as the product of positive Dehn twists. Then, the problem of classifying minimal fillings of contact 3 manifolds, or answering questions about which manifolds can be realised by Legendrian surgery, becomes questions about finding factorisations for a given mapping class. This talk will be expository and expand upon how these mapping classes come up, and also discuss known results, techniques, and future directions for research.

Pages